CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

Curriculum and Syllabi

Integrated B.Sc.-M.Sc. (Mathematics)

(Batch 2021-2026)

DEPARTMENT OF MATHEMATICS SCHOOL OF BASIC SCIENCES

Approved by	:	BOS	School Board	Academic Council
Approval Status	:	\checkmark	\checkmark	\checkmark
Approval Date	:	04/09/2021	20/09/2021	12/10/2021
Approval Date	:	10/05/2022	14/05/2022	
Approval Date	:	06/09/2022	12/09/2022	07/10/2022

Sr. No	Contents	Page No
110.	Vision and Mission	03
1	i) Preamble	04
	ii) Introduction	05
	iii) Learning Outcomes Based Approach to Curriculum Planning	06
	iv) Nature and Extent of Integrated B.ScM.Sc. (Mathematics) Programme	06
2	Aims of Integrated B.ScM.Sc. (Mathematics) Programme	07
3	Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)	08
4	Integrated B.ScM.Sc. Attributes	10
5	QualificationDescriptorsforIntegratedB.ScM.Sc.(Mathematics)(Possible Career Pathways):	11
6	Structure of Integrated B.ScM.Sc. (Mathematics) Programme	12
7	Course Types	13
8	Semester wise Details of Integrated B.ScM.Sc. (Mathematics) Course & Credit Scheme	17
9	Generic Elective Courses (for other departments only)	100
10	Teaching-Learning Process	123
11	Implementation of Blended Learning	123
12	Assessment and Evaluation	124
13	Keywords	125
14	References	125
15	Appendix: (i) List of Courses in Integrated BSc-MSc, and MScMathematics programs(ii) Structure of Question Papers and Marks Distribution	126

Table of Contents

VISION AND MISSION

Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavor's and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

Vision and Mission of the Department

Vision

To be an internationally recognized centre for research and teaching in mathematics. To encourage excellence, innovation, integrity and values for society in the department. To produce global leaders for academic and industry by imparting multidisciplinary and contemporary mathematical knowledge to the students.

Mission

- To contribute towards building calibre of the students by providing quality education and research in Mathematics through updated curriculum, effective teaching learning process.
- To impart innovative skills, team-work, ethical practices to the students so as to meet societal expectations.
- To build a strong base in Mathematics for various academic programs across the institute.

1. Background

i) Preamble

Mathematics is a fundamental part of human thoughts and logic, and Integral to attempts at understanding the world and ourselves. Mathematics, as we all know, provide an effective way of building mental discipline and encourages logical reasoning. In addition, mathematical knowledge plays a vital role in understanding the contents of others subjects such as Basic Sciences, Social sciences and in Music and Art. This has been argued and established that there can't be a nation without mathematics. Today, more than ever before, the challenges of globalization and digitalization obligate mathematicians and researchers to go beyond the local, national, and even continental frontiers of their knowledge.

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms. At the outset, it may well be stated that NEP 2020 document owes it origin to meet the fundamental challenges of ever changing academics scales at Global level. Thus, a high priority task in the context of future education development agenda in India is fostering quality higher education. The idea is to involve young minds in knowledge production and of greater participation of knowledge itself. Participation in knowledge, by young minds, is an important departure from the existing structure at undergraduate level. Implementation of new structure is based on guiding principles of Learning Outcome based Curriculum Framework (LoCF). The fundamental premise underlying the learning outcome based approach to curriculum planning and development is that higher education qualifications such as Bachelor-Master integrated degree programme are awarded on the basis of demonstrated achievement of outcomes (expressed in terms of knowledge, understanding, skills, attitudes and values) and academic standards expected of Graduate-Master of a programme of study. The LOCF approach is envisioned to provide a focused, outcome-based syllabus at the Bachelor-Master integrated

with an agenda to structure the teaching-learning experiences in a more student-centric manner. The LOCF approach has been adopted to strengthen student's experiences as they engage themselves in the programme of their choice. The Graduate-Master programme will prepare the students for academia and also prepare them to use this knowledge for employment. The given programme elaborates its nature and promises the outcomes that are to be accomplished by studying the courses. The programme also state the attributes that it offers to inculcate at the graduation level. The Bachelor-Master integrated attributes encompass values related to wellbeing, emotional stability, critical thinking, and also skills for employability. The programme prepares students for sustainability and lifelong learning. This also tries to change the perception towards studying mathematics. This course is designed to break the stereotypes of mathematics learning and create interest amongst students to do Mathematics. This programme is organized to provide the greatest flexibility to its students. There are Core Disciplinary papers that provide the fundamental knowledge in the discipline of mathematics. The programme is otherwise envisaged to provide a large amount of choice so that students can adapt their education on the basis of their interests. These provide not just mathematical knowledge and skills but also a vital skill in other disciplines as well.

Flexible learning is important to choose one's academic pathway leading to the award of certificate, diploma, and degree. The multiple entry exit will be according to the UGC guidelines and University ordinances.

ii) Introduction:

The objective of this programme is to prepare the students with a new vision. One of the significant reforms in integrated B.Sc.-M.Sc. (Mathematics) programme is to introduce the Learning Outcomes-based Curriculum Framework (LOCF) which makes it student-centric, interactive and outcome-oriented with well-defined aims, objectives and goals to achieve. Outcome based learning is the principal end of pedagogical transactions in higher education in today's world in the light of exponential changes brought about in science and technology, especially in mathematics. The learning outcomes will be attained by students through skills acquired during this programme of study. Programme learning outcomes will include subject-specific skills and generic skills, including transferable global skills and competencies. This programme would also focus on knowledge and skills that will prepare students for employment, and for further studies.

The quality education in mathematics is very challenging task for higher education system in India. In designing this course we have taken appropriate measures to define the minimum levels of learning for students in integrated B.Sc.-M.Sc. (Mathematics) programme. The given programme elaborates its nature and promises the outcomes that are to be accomplished by studying the courses. The programme also state the attributes that it offers to inculcate at the different levels. It is designed to bring out the best intellect of the student and also allow the student to keep pace with the contemporary development.

The Integrated B.Sc.-M.Sc. (Mathematics) programme offers student's access to Core Courses, Ability Enhancement Compulsory Courses, Skill Enhancement Courses, Discipline Specific Electives and Generic Electives. The Programme-learning outcomes and course learning outcomes have been clearly specified to help prospective students, parents and employers understand the nature and extent of the degree programme; to maintain national and international standards, and to help in student mobility.

iii) Learning Outcomes Based Approach to Curriculum Planning:

The learning outcomes-based curriculum framework for Integrated B.Sc.-M.Sc. (Mathematics) programme is based on the expected learning outcomes and graduate-master attributes that a graduate-master in mathematics is expected to attain. The curriculum for Integrated B.Sc.-M.Sc. (Mathematics) programme is prepared keeping in mind the needs and aspirations of students in mathematics as well as the evolving nature of mathematics as a subject. The course learning outcomes and the programme learning outcomes specify the knowledge, understanding, skills, attitudes and values that a student completing this degree is expected to know. The qualification of Integrated B.Sc.-M.Sc. (Mathematics) programme is awarded to a student who can demonstrate the attainment of these outcomes.

iv) Nature and Extent of the Integrated B.Sc.-M.Sc. (Mathematics) Programme:

The Integrated B.Sc.-M.Sc. (Mathematics) is of five years duration. Each year is divided into two semesters. The total numbers of semester are ten and it is presumed that each semester will be of eighteen weeks duration. The teaching and learning in the Integrated B.Sc.-M.Sc. (Mathematics) will involve theory classes (lectures), practical classes and tutorial classes.

Mathematics is usually described as the abstract science of number, quantity and space along with their operations. The scope of Mathematics is very broad and it has a wide

range of applications in natural sciences, engineering, economics, social sciences and in data science. Integrated B.Sc.-M.Sc. (Mathematics) programme aims at developing the ability to think critically, logically and analytically and hence use mathematical reasoning in everyday life. Pursuing a degree in mathematics will introduce the students to a number of interesting and useful ideas in preparations for a number of mathematics careers in education, research, government sector, business sector and industry. The Integrated B.Sc.-M.Sc. (Mathematics) programme covers the full range of mathematics, from classical Calculus to Modern Cryptography, Information Theory, and Network Security. The course lays a structured foundation of Calculus, Real & Complex analysis, Abstract Algebra, Differential Equations (including Mathematical Modelling), Number Theory, Graph Theory, and C++ Programming exclusively for Mathematics. An exceptionally broad range of topics covering Pure & Applied Mathematics: Linear Algebra, Metric Spaces, Statistics, Linear Programming, Numerical Analysis, Mathematical Finance, Coding Theory, Mechanics and Biomathematics cater to varied interests and ambitions. Also hand on sessions in Computer Lab using various Computer Algebra Systems (CAS) softwares such as Maple, Mathematica, MATLAB, Maxima and R to have a deep conceptual understanding of the above tools are carried out to widen the horizon of students' self experience. The courses like Biomathematics, Mathematical Finance etc. emphasize on the relation of mathematics to other subjects like Biology, Economics and Finance. To broaden the interest for interconnectedness between formerly separate disciplines one can choose from the list of Generic electives for example one can opt for economics as one of the GE papers. Skill enhancement Courses enable the student acquire the skill relevant to the main subject. Choices from Discipline Specific Electives provides the student with liberty of exploring his interests within the main subject. The key importance is the theme of integrating mathematical and professional skills. The well structured programme empowers the student with the skills and knowledge leading to enhanced career opportunities in industry, commerce, education, finance and research.

2. Aims of Integrated B.Sc.-M.Sc. (Mathematics) programme:

The overall aims of Integrated B.Sc.-M.Sc. (Mathematics) programme are follows:

- i) Inculcate strong interest in learning mathematics and have balanced knowledge for understanding of definitions, key concepts, principles and theorems in mathematics.
- ii) Enable students to apply the knowledge and skills acquired by them during the programme to solve problems in mathematics.

- iii) Train students to communicate mathematical ideas in a lucid and effective manner, which will be helpful in wage employment, self-employment and entrepreneurship.
- iv) Provide students with sufficient knowledge and skills that enable them to undertake research in different fields of mathematics and related disciplines.
- v) To encourage the use of relevant software such as MATLAB, Maple, R and MATHEMATICA.

3. Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Program Outcomes:

Students enrolled in the integrated B.Sc.-M.Sc. Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the
	innovation	scientific problems and innovatively to design and create
		products and solutions to real life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply
	global competency	knowledge to find the solution of burning research
		problems in the concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary
		skills and advanced techniques and apply them for
		betterment of mankind.

PO-8	Leadership and	Ability to learn and work in a groups and capable of
	Teamwork abilities	leading a team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
	awareness	
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to
	Social awareness	relate with social problems.
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important
	skills and	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish independent startup/innovation center
		etc.

Programme Specific Outcomes (PSOs):

On completion of Integrated B.Sc.-M.Sc. (Mathematics) Programme a student:

Number	Programme Specific Outcomes
PSO-1	Will have a strong foundation in both pure and applied mathematics.
PSO-2	Will be able to apply mathematical skills for solving problems and for preparing various competitive exams.
PSO-3	Will be able to communicate mathematical knowledge effectively, in writing as well as orally.
PSO-4	Will identify applications of mathematics in other disciplines, leading to enhancement of career prospects in different fields and research areas.
PSO-5	Will have basic knowledge of programming and computational techniques as required for employment.
PSO-6	Should have the knowledge of the fundamental axioms in mathematics and capability of developing ideas based on them and inculcate mathematical reasoning.

PSO-7	Will be able to locate and analyse the different mathematical texts with appropriate theoretical framework.
PSO-8	Have the knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in science, social science, engineering and technology.
PSO-9	Should be able to develop analytical skills, critical thinking, creativity, communication and presentation skills through assignments, seminar and project work.
PSO-10	Should be able to apply their skills and knowledge that translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

4. Integrated B.Sc.-M.Sc. (Mathematics) Attributes:

On completion of the course students are expected to have acquired the skills of multi dimensional thinking, analytical reasoning, rational enquiry, problems solving, effective communication, and exploring the different areas of pure and Applied mathematics. The attributes expected from the students of Integrated B.Sc.-M.Sc. (Mathematics) Programme are as:

- a. **Disciplinary Knowledge**: Capability of demonstrating comprehensive knowledge of basic concepts and ideas in mathematics and its subfields, and its applications to other disciplines.
- b. **Communications skills:** Ability to communicate various concepts of mathematics in effective and coherent manner both in writing and orally, ability to present the complex mathematical ideas in clear, precise and confident way.
- c. **Multidimensional thinking and analytical reasoning:** Ability to apply multidimensional thinking in understanding the concepts in mathematics and allied areas; identify relevant assumptions, hypothesis, implications or conclusions; formulate mathematically correct arguments; ability to analyse and generalise specific arguments or empirical data to get broader concepts.

- d. **Problem solving**: Be able to apply mathematical skills and logical reasoning for solving different kinds of non-familiar problems. Capability to solve problems in computer graphics using concepts of linear algebra; linear programming, C, C++, Matlab, Maple and Mathematica. Capability to apply the knowledge gained from different areas of mathematics to solve specific problems or models in operations research, physics, chemistry, electronics, medicine, economics, finance etc.
- e. **Research-related skills**: Capability to ask and inquire about relevant/appropriate questions, ability to define problems, formulate hypotheses, test hypotheses, formulate mathematical arguments and proofs, draw conclusions; ability to write clearly the results obtained.
- f. **Self-directed learning**: Ability to work independently, ability to search relevant resources, capability to use ICT tools and e-content for self-learning and enhancing knowledge in mathematics.
- g. **Moral and ethical awareness**: Ability to identify unethical behavior such as fabrication or misrepresentation of data, committing plagiarism, infringement of intellectual property rights.
- h. **Employment**: Have sound knowledge of mathematical modelling, programming and computational techniques as required for employment in industry.

5. Qualification Descriptors for Integrated B.Sc.-M.Sc. (Mathematics) (Possible Career Pathways):

Students who choose Integrated B.Sc.-M.Sc. (Mathematics) programme, develop the ability to think critically, logically and analytically and hence use mathematical reasoning in everyday life. Pursuing a degree in mathematics will introduce the students to a number of interesting and useful ideas in preparations for a number of mathematics careers in education, research, government sector, business sector, entrepreneurship and industry. The key importance is the theme of integrating mathematical and professional skills. The well-structured programme empowers the student with the skills and knowledge leading to enhanced career opportunities in industry, commerce, education, finance and research. The qualification descriptors for Integrated B.Sc.-M.Sc. (Mathematics) programme may include the following:

- i. Demonstrate fundamental/systematic and coherent knowledge of the academic field of mathematics and its applications and links to engineering, science, technology, economics and finance; demonstrate procedural knowledge that create different professionals like teachers and researchers in mathematics, quantitative analysts, actuaries, risk managers, professionals in industry and public services.
- ii. Demonstrate educational skills in areas of analysis, geometry, algebra, mechanics, differential equations etc.
- iii. Demonstrate comprehensive knowledge about materials, including scholarly, and/or professional literature, relating to essential learning areas pertaining to the field of mathematics, and techniques and skills required for identifying mathematical problems.
- iv. Apply the acquired knowledge in mathematics and transferable skills to new/unfamiliar contexts and real-life problems.
- v. Demonstrate mathematics-related and transferable skills that are relevant to some of the job trades in education sector, entrepreneurship and employment opportunities.

6. Structure of integrated B.Sc.-M.Sc. (Mathematics) Programme:

The Integrated B.Sc.-M.Sc. (Mathematics) programme is a five year course divided into 10 semesters. A student is required to have complete the credit as per University ordinance and UGC guidelines. The scheme and syllabus of the course are subject to change according to the UGC guidelines, NEP 2020 and University ordinance.

Duration: Integrated B.Sc.-M.Sc. (Mathematics) program is a full-time integrated program offered by the Department of Mathematics. This is a 5-years program, consisting of ten semesters with two semesters per year.

Eligibility: 10+2 in Science Streams or equivalent of any recognized board in India with Mathematics as one of the optional subjects having minimum 50% marks or equivalent grade in aggregate for UR category and 45% or equivalent grade for SC/ST/OBC/PWD/EWS candidates.

7. Course Type

Core Courses (CC) Generic Elective Courses (GEC) Discipline Specific Elective Courses (DSEC) Skill Enhancement Courses (SEC) Ability Enhancement Compulsory Courses (AECC)

Total Credit: Semester-wise distribution of credits: 22+ 22+ 28 + 28+24+24 CORE COURSES (CC)

S.No.	Course code	Course title	L	Т	Р	Credit
1.	SBSMAT 03 01 01 C 4046	Calculus (P)	4	0	4	6
2.	SBSMAT 03 01 02 C 5106	Algebra	5	1	0	6
3.	SBSMAT 03 02 01 C 5106	Real Analysis	5	1	0	6
4.	SBSMAT 03 02 02 C 4046	Differential Equations (P)	4	0	4	6
5.	SBSMAT 03 03 01 C 5106	Multivariable Calculus	5	1	0	6
6.	SBSMAT 03 03 02 C 5106	Group Theory	5	1	0	6
7.	SBSMAT 03 03 03 C 5106	Probability and Statistics	5	1	0	6
8.	SBSMAT 03 04 01 C 5106	Mechanics	5	1	0	6
9.	SBSMAT 03 04 02 C 5106	Linear Algebra	5	1	0	6
10.	SBSMAT 03 04 03 C 5106	Partial Differential Equations and Calculus of Varitation	5	1	0	6
11.	SBSMAT 03 05 01 C 5106	Set Theory and Metric Spaces	5	1	0	6
12.	SBSMAT 03 05 02 C 5106	Advanced Algebra	5	1	0	6
13.	SBSMAT 03 06 01 C 5106	Complex Analysis	5	1	0	6
14.	SBSMAT 03 06 02 C 4046	Numerical Analysis	4	0	4	6

DISCIPLINE SPECIFIC ELECTIVE COURSES (DSE)

(Offered to the Students of Integrated B.Sc.-M.Sc. (Mathematics) by the Department)

S.No.	Course code	Course title	L	Т	Р	Credit
1.	SBSMAT 03 05 01 DSE 5106	Tensors and Differential Geometry	5	1	0	6
2.	SBSMAT 03 05 02 DSE 5106	Mathematical Logic	5	1	0	6
3.	SBSMAT 03 05 03 DSE 5106	Integral Transforms and Fourier Analysis	5	1	0	6
4.	SBSMAT 03 05 04 DSE 5106	Linear Programming	5	1	0	6
5.	SBSMAT 03 05 05 DSE 5106	Information and Coding Theory	5	1	0	6
6.	SBSMAT 03 05 06 DSE 5106	Graph Theory	5	1	0	6
7.	SBSMAT 03 05 07 DSE 5106	Special Theory and Relativity	5	1	0	6
8.	SBSMAT 03 05 08 DSE 5106	Analytical Geometry	5	1	0	6
9.	SBSMAT 03 06 01 DSE 5106	Discrete Mathematics	5	1	0	6
10.	SBSMAT 03 06 02 DSE 5106	Wavelets and Applications	5	1	0	6
11.	SBSMAT 03 06 03 DSE 5106	Number Theory	5	1	0	6
12.	SBSMAT 03 06 04 DSE 5106	Mathematical Finance	5	1	0	6
13.	SBSMAT 03 06 05 DSE 5106	Cryptography	5	1	0	6
14.	SBSMAT 03 06 06 DSE 5106	Advanced Mechanics	5	1	0	6
15.	SBSMAT 03 06 07 DSE 5106	Dissertation on Any Topic of Mathematics	5	1	0	6

Note: Any MOOCs course for PG students on SWAYAM can also be taken as DCEC or GEC course on the recommendations of the department.

ABILITY ENHANCEMENT COMPULSORY COURSES (AECC)*:

Sr.	Course Code	Course Title	L	Τ	Р	Credits
1.	SBSMAT 03 01 01 AECC 3104	Environmental Sciences	3	1	0	4
2.	SBSMAT 03 02 01 AECC 3104	प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1)	3	1	0	4
3.	SBSMAT 03 02 02 AECC 3104	हिंदी भाषा : रचना एवं व्यवहार	3	1	0	4
4.	SBSMAT 03 02 03 AECC 3104	English	3	1	0	4

SKILL ENHANCEMENT ELECTIVE COURSES (SEC)*:

The department may offer more than one course depending on the specialization and strength of faculty members. The students have to opt for one course from Sr. 1 and 2 in 3rd semester and one from Sr. 3 and 4 in 4th semester from the following.

Sr.	Course Code	Course Title	L	Τ	Р	Credits
1.	SBSMAT 03 03 01 SEC 3104	Logic, Sets and Graph Theory	3	1	0	4
2.	SBSMAT 03 03 02 SEC 3024	Computer Fundamentals and Programming in C	3	0	2	4
3.	SBSMAT 03 04 01 SEC 3024	Object Oriented Programming in C++(P)	3	0	2	4
4.	SBSMAT 03 04 02 SEC 3104	Linux Operating System and Computer Graphics	3	1	0	4

* 1. University/Department may add more choices for Ability Enhancement Compulsory and Skill Enhancement Elective Courses.

2. The AECC course Environmental Sciences is compulsory, whereas one out of the remaining three AECC courses (प्राचीनभारतीयसंस्कृति:, दर्शनं भाषाविज्ञानं च, हिंदी भाषा: रचना एवं व्यवहार and English/MIL) will be taught in first/second semester according to availability of faculty members in respective departments.

******This scheme supersedes the earlier available scheme.

8. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION Scheme and Syllabus of Integrated B.Sc.-M.Sc. in Mathematics (CHOICE BASED CREDIT SYSTEM)

Semester I

Total credits: 22

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Calculus	SBSMAT 03 01 01 C 4046	4	0	4	6
2	Algebra	SBSMAT 03 01 02 C 5106	5	1	0	6
3	AECC1		3	1	0	4
4	GE 1		5	1	0	6

Semester II

Total credits: 22

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Real Analysis	SBSMAT 03 02 01 C 5106	5	1	0	6
2	Differential Equations	SBSMAT 03 02 02 C 4046	4	0	4	6
3	AECC2		3	1	0	4
4	GE 2		5	1	0	6

Semester III

Total credits: 28

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Multivariable Calculus	SBSMAT 03 03 01 C 5106	5	1	0	6
2	Group Theory	SBSMAT 03 03 02 C 5106	5	1	0	6
3	Probability and Statistics	SBSMAT 03 03 03 C 5106	5	1	0	6
4	SEC1		3	1/0	0/2	4
5	GE3		5	1	0	6

Semester IV

Total credits: 28

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Mechanics	SBSMAT 03 04 01 C 5106	5	1	0	6
2	Linear Algebra	SBSMAT 03 04 02 C 5106	5	1	0	6
3	Partial Differential Equations and Calculus of Variation	SBSMAT 03 04 03 C 5106	5	1	0	6
4	SEC2		3	1/0	0/2	4
5	GE4		5	1	0	6

Semester V

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Set Theory and Metric Spaces	SBSMAT 03 05 01 C 5106	5	1	0	6
2	Advanced Algebra	SBSMAT 03 05 02 C 5106	5	1	0	6
3	DSE1		5	1	0	6
4	DSE2		5	1	0	6

Semester VI

Total credits: 24

S. No.	Course Title	Course Code	L	Т	Р	Credits
1	Complex Analysis	SBSMAT 03 06 01 C 5106	5	1	0	6
2	Numerical Analysis	SBSMAT 03 06 02 C 4046	4	0	4	6
3	DSE3		5	1	0	6
4	DSE4		5	1	0	6

COURSE-LEVEL LEARNING OUTCOMES

Course Structure

SEMESTER – I

Course	Course Name: Calculus (P)				Course Code: SBSMAT 03 01 01 C		
No: 1					4046		
Batch:	Programme:	Semester	L	Т	Р	Credits	Contact
		:					Hrs per
	Integrated						Week: 08
2021-	B.ScM.Sc.						
2026	(Mathematics)	Ι	4	0	4	6	Total
							Hours: 120
Total Eva	luation Marks:	Examinati	on Durati	on:	3 hours	I	<u> </u>
100							
CIE:	Pre-requisite of course: Nil						
TEE:							
Course	The course obje	ective is to	understand	d the axior	natic founda	tion of the	real number
Objectiv	system, in parts	icular the r	notion of	completen	ess and som	ne of its o	consequences;
e	understand the	concepts o	f limits,	continuity,	compactnes	s, differen	tiability, and
	integrability, rig	orously defi	ned;. Stud	lents should	d also have a	attained a	basic level of
	competency in de	eveloping th	eir own m	athematical	skill.		
Course	A ftor go	ing through	this cours	a the stude	nte will be a	hla ta	
Course	After go			e the stude		· · · · · ·	T 1 .
Outcom	• Understar	nd the me	thod of	successive	differentiat	ion and	l'aylor series
es:	expansion	ns.					
	• Be famili	ar with conc	epts of asy	mptotes, cu	urvature and s	singular poi	nts.
	• Apply th	e concepts	of calculu	s for tracin	ng and rectif	ication of	the curves in
	Cartesian	, parametric	and polar	coordinates	8.		
	• Understa	nd reduction	n formula	e and be f	familiar with	the metho	od of finding

	volumes and surfaces of solids of revolution	
Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	Hyperbolic functions, higher order derivatives, Leibniz rule and its	30
	applications to problems of type $e^{ax+b}sin x$, $e^{ax+b}cos x$, $(ax+b)^nsinx$,	
	(ax+b) ⁿ cos x concavity and inflection points, asymptotes	
	L'Hospitals rule, applications of maxima and minima.	
II	Curve tracing in Cartesian coordinates, tracing in polar coordinates of	30
	standard curves, Reduction formulae, derivations and illustrations of	
	reduction formulae of the type $\int \sin nx dx$, $\int \cos nx dx$, $\int \tan nx dx$, $\int \sec nx dx$, $\int (\log nx dx) \sin nx dx$, $\int \sin nx$	
	x) ⁿ dx, $\int \sin^n x \cos^m x dx$ volume by slicing, disks and washer methods, volumes	
	by cylindrical shells.	
III	Parameterizing a curve, arc length, arc length of parametric curves	30
	and area of surface of revolution. Techniques of sketching conics,	
	reflection properties of conics, rotation of axes and second degree	
	equations, classification into conics using the discriminant, polar	
	equations of conics.	
IV	Triple product, introduction to vector functions, operations with	30
	vector-valued functions, limits and continuity of vector functions,	
	differentiation and integration of vector functions, tangent and normal	
	components of acceleration, connectedness.	

Books Recommended:

- 1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005 (Textbook).
- 2. B. C. Das & B. N. Mukherjee, Differential Calculus, U. N. Dhur and Sons. Pvt. Ltd.
- 3. S. Narayan & P. K. Mittal, Integral Calculus, S. Chand Publishing, (Textbook).
- 4. S. Narayan & P. K. Narayan, A Text Book on Vector Calculus, S. Chand Publishing, (Textbook).
- 5. M.J. Strauss, G.L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi,2007.
- 6. H. Anton, I. Bivens and S. Davis, Calculus, 7th Ed., John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- 7. R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer-Verlag, New York, Inc., 1989.

List of Practical (using any software)

Plotting of graphs of function $e^{ax + b}$, log(ax + b), 1/(ax + b), sin(ax + b), cos(ax + b), |ax + b| and to illustrate the effect of a and b on the graph.

- (i) Plotting the graphs of polynomials of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.
- (ii) Sketching parametric curves (E.g., Trochoid, cycloid, epicycloids and hypocycloid).
- (iii) Obtaining surface of revolution of curves.
- (iv) Tracing of conics in Cartesian coordinates/ polar coordinates.
- (v) Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid and hyperbolic paraboloid using Cartesian coordinates.
- (vi) Matrix operations (addition, multiplication, inverse, transpose).

Course	Course Name: Algebra			Course Code: SBSMAT 03 01 02 C 5106				
No: 2		-						
Batch:	Programme:	Semester:	Credits	Contact				
							Hrs per	
	Integrated						Week:	
2021-2026	B.ScM.Sc.	Ι					06	
	(Mathematics)							
			5	1	0	6	Total	
							Hours:	
							90	
Total Evalu	ation Marks:	Examination	on Duration:	31	nours			
100								
		D	4 P	NT A				
CIE:		Pre-requis	ite of course:	N.A.				
TEE:								
Course	The objective of the course is to introduce basic structures of algebra like matrices,							
Objective	system of linear equation and linear transformation which are the main pillars of modern							
	mathematics. The course gives the student a good mathematical maturity and enables to							
	build mathemation	cal thinking a	and skill.					
Course	After going	through thi	s course the st	udents will b	e able to			
Outcomes:	• Work wi	th the trigon	ometric form	of complex n	umbers inc	luding De	-Moivre's	
	formula.							
	• Be famili	ar with the E	culer form re ^{io}	of complex nu	umbers			
	Apply the	e elementary	operations on	the matrices.	Compute th	e eig	genvalues,	
	eigen fun	ction, charac	teristic equation	on and minima	al polynomia	al of a give	en matrix.	
	• Obtain th	e solution of	the systems of	f linear equati	ons using th	e concept	of rank of	
	matrices							
Unit No.		Co	ontent of Each	n Unit		Hours	of Each	
						U	nit	
Ι	Polar representa	ation of com	plex numbers	s, n th roots of	unity, De	2	23	
	Moivre's theor	em for rat	ional indices	and its ap	plications.			
	Equivalence re	lations, Fu	nctions, Com	position of	functions,			

	Invertible functions, One to one correspondence and cardinality	
	of a set.	
II	Well-ordering property of positive integers, Division algorithm,	22
	Divisibility and Euclidean algorithm, Congruence relation	
	between integers, Principles of Mathematical Induction,	
	statement of Fundamental Theorem of Arithmetic.	
III	Systems of linear equations, row reduction and echelon forms,	23
	vector equations, the matrix equation Ax=b, solution sets of	
	linear systems, applications of linear systems, linear	
	independence.	
IV	Introduction to linear transformations, matrix of a linear	22
	transformation, inverse of a matrix, Characterizations of	
	invertible matrices. Subspaces of \mathbf{R}^{n} , dimension of subspaces \mathbf{R}^{n}	
	and rank of a matrix, Eigenvalues, Eigen Vectors and	
	Characteristic Equation of a matrix.	
Deeles D	· · · · · · · · · · · · · · · · · · ·	
BOOKS Reco	ommended:	
1. Hall	& Night, Higher Algebra, Arihant Publishers, 2013, (Textbook).	

- 2. K. Hoffman, R.A. Kunze, Linerar Algebra 2nd Ed., Prentice-Hall of India Pvt. Ltd., 1971.
- 3. S. L. Loney, Plane Trigonometry, Arihant Publishers, 2016.
- 4. D. C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007, (Textbook).
- 5. R.G. Bartle and D. R. Sherbert, Introduction to Real Ananlysis. Willy Std Edition, 2014.
- 6. B. Das & B N Mukherjee, Higher Trigonometry, U N Dhur & Sons, 2007.
- 7. T. Andreescu and D. Andrica, Complex Numbers from A to Z, Birkhauser, 2006
- 8. E. G. Goodaire and M. M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.

Course	Course Name: Environmental Sciences			Course Code: SBSMAT 03 01 01				
No: 03					AECC 3104	ŀ		
Batch:	Programme:	Semester	L	Т	Р	Credits	Contact	
		:					Hrs per	
	Integrated	Ι					Week: 4	
2021-	B.ScM.Sc.		3	1	0	4	Total	
2026	(Mathematics)						Hours: 60	
Total Eval	uation Marks:	Examinati	on Dui	ation:	3 hours	I	I	
100								
CIE:		Pre-requis	site of c	ourse:				
TEE:		-						
Course	To aware the stu	dents the ne	ed for s	sustainable d	levelopment, j	problems of po	ollution, solid	
Objective	waste disposal, degradation of environment, issues like economic productivity and							
	national security, Global warming, the depletion of ozone layer, loss of biodiversity and							
	need of worldwide efforts in its conservation.							
	After going		s cours	ture de studen				
	• Get the	knowledge	about	trends of	biological d	iversity and	conservation	
	strategies	s and therea	ifter be	able to cre	ate awarenes	s for its cons	ervation and	
	developn	nent.						
	• Understa	nding of iss	ues con	ncerning dif	terent natura	l resources w	ill be helpful	
	to find sc	eientific solu	ition ba	ised on parti	cipatory appi	roach.		
	• Know ab	out the loca	l envir	onmental is	sues, movem	ents and an ir	nportant role	
	to minim	ize the impa	act of th	nese aspects				
	Knowled	ge about the	e types	of pollution	n and pollutio	n control	I	
Unit No.			Conte	ent of Each	Unit		Hours of	
							Each Unit	
Ι	Definition, scope	e and impor	rtance (of the envir	onmental scie	ence, Natural	15	
	associated proble	wable and no	on-rene	wable resour	rces: matural i	resources and		
	Intuo d	de of	40.00- 4			4:0 or 1 1 ' '	15	
11	component Eco	as of ecosyst logical energy	tem, str	ucture and f	unctions, abio models For	tic and biotic	15	
	Food web,	Ecological	Pyra	mids-types,	Ecological	succession,		
	Introduction, typ	es, structure	and fu	nction of the	e following ec	osystem :- a.		
	Forest ecosystem	n b. Grassla	nd ecos	ystem c. De	esert ecosystem	m d. Aquatic		

	ecosystems.			
III	Introduction – Definition, value and types: genetic, species and ecosystem diversity. Bio- geographical classification and Hot-spots of India. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In- situ and Ex-situ conservation.	15		
IV	IVDefinition, cause, effects and control measures of Air, Water, Soil, Marine and Noise pollution. Solid Waste Management: Causes, effects and control measures of wastes. Seventeen Sustainable Developmental Goals, Environment Protection Act, Air Act, Water Act, Wildlife Protection Act, Forest Conservation Act, Public awareness.			
Books	Recommended:			
1.	Bharucha E, (2002) The Biodiversity of India, Mapin Publishing			
2.	Cao G, Orru R (2014) Current Environmental Issues and Challenges. 2014th edition	on; Springer		
3.	Cunningham W P, Cunningham M A (2008) Principles of Environment Science. E Applications. 5 th Edition. Tata McGraw Hill, New Delhi	Enquiry and		
4.	Dash M C, Dash S P (2009) Fundamentals of Ecology. 3rd McGraw Hill Education	1		
5.	Gibbs J, Malcolm L, Sterling J (2008) Problem-Solving in Conservation Biology a Management. 2 nd ed. Wiley-Blackwell	nd Wildlife		
6.	Ginley D, Cahen, D (2011) Fundamentals of Materials for Energy and Environmen Sustainability. Cambridge University Press	ntal		
7.	Gilbert M (2007) An Introduction to Environmental Engineering and Science, Pren New Delhi	ntice Hall,		
8.	Khan I (2019) Forest Governance and Sustainable Resource Management. SAGE Publications. India.			
9.	Odum E P, Barrett W, (2005) Fundamentals of Ecology. 5th ed. Cengage Learning			
10.	Sharma P D (2017) Ecology and Environment. 13th ed. Rastogi Publications			
11.	Thangadurai D, Ching G, Jeyabalan S, Islam S (2019) Biodiversity and Conservati Characterization and Utilization of Plants, Microbes and Natural Resources for Sus Development and Ecosystem Management. United States: Apple Academic Press	ion: stainable		

Course	Course Name: प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च				Course Code: SBSMAT 03 01 02				
No: 04	(1)				AECC 3104				
Batch:	Programme:	Semester	L	Т	Р	Credits	Contact		
		:					Hrs per		
	Integrated	Ι					Week: 4		
2021-	B.ScM.Sc.		3	1	0	4	Total		
2026	(Mathematics)						Hours: 60		
Total Eval	uation Marks:	Examination Duration: 3 hours							
100									
CIE:		Pre-requis	site of c	ourse:					
TEE:									
Course	1. संस्कृतेतर-विषयाणामध्येतृभ्यः संस्कृताध्ययनाय सौकर्योत्पादनम्; 2. भारतीयज्ञानसंपदाधारभूतानां वेदादि-								
Objective	शास्त्राणामुपनिषदां च रुचिरुत्पादनम्; 3. संस्कृतेनोपनिबद्धानां नीतिवाक्यानां गीतायां वर्णितस्य कर्मयोगस्य च								
/उद्देश्यः	तत्त्व-संधारणाय यत्नः; 4. सामान्य-भाषाविज्ञानस्य परिचयः।								
	पाठ्यक्रमाध्ययनस्य 	य फलम् / Co	ourse L	evel Learni	ng Outcome:				
	●अ	ध्येतारः वेदादि	-शास्त्राण	मुपनिषदां च	तत्त्वान् ज्ञात्वा स्व	ाध्याय प्रयत्नशील	ताः भवेयुः।		
	●व्य	ावहारिकदृष्ट्या	संस्व	व्तज्ञानेन अ	न्यविषयाणामध्ये	तारः तत्तद्	स्वविषयानुगुणं		
		संस्कृतभाषाया	मुप- लभ्र	यमानानां ग्रन्था	नां प्रति यत्नशील	ाः स्युः।	50		
	●वेव	रोपनिषत–गीता	–नीतिश	स्त्र-भाषाशास्त्र	ादीनां विषयाणां	सम्यगध्ययनेना	स्माकं पर्वजानां		
		वैदुष्येण परिचर	यः संजाये	त।			6		
	●भा	् गतीय-चिन्तनप	गम्पगयाः	समदिं जातम	यं पाठयकम∙ पव	हुष्रमाध्यम• मंजार	येत।		
Unit No.			Conte	ent of Each	Unit		Hours of		
							Each Unit		
I	घटकम्-1: (क) यज्	र्वेदः (34. 1-6	5)-शिव सं	कल्पमन्त्राः; (ख	व) तैत्तिरीयोपनिष	र् - शिक्षावल्ली	15		
	(अनुशासनोपनिषद्)								
П	घटकम-2: भर्तहरि:-	नीतिशतकम · ा	1-50 श्रो	काः			15		
	······································						10		

III	घटकम्-3: भगवद्गीता – तृतीयाध्यायः (कर्मयोगः)						
IV	घटकम्-4: सामान्यभाषाविज्ञानम्- (क) वर्णमाला, वर्णानाम् उच्चारणस्थानानि प्रयत्नाश्च; (ख)	15					
	भाषाविज्ञानस्य सामान्यः परिचयः, भाषापरिवर्तनस्य कारणानि, अर्थपरिवर्तनस्य कारणानि च						
अनुशंसितग्रन्	थाः -						
1. उवव्ट-महीधर	, शुक्लयजुर्वेदभाष्य, मोतीलाल बनारसीदास, दिल्ली, 2007						
2. स्वामी दयानन	द सरस्वती, यजुर्वेदभाष्य, सम्पा० ब्रह्मदत्त जिज्ञासु, रामलाल कपूर ट्रस्ट, सोनीपत (हरियाणा)						
3. तैत्तिरीयोपनिष	द्, हिन्दी व्याख्याकार - स्वामी प्रखर प्रज्ञानन्द सरस्वती, काशी, 2013						
4. भर्तृहरि, नीतिः	रातक, सम्पादक एवं हिन्दी व्याख्याकार - जनार्दन शास्त्री पाण्डेय, मोतीलाल बनारसीदास, दिल्ली, 2014						
5. नीतिशतकम्,	5. नीतिशतकम्, 'नीतिपथ' हिन्दी व्याख्याकार - राजेश्वर शास्त्री मुसलगाँवकर, चौखम्भा, वाराणसी						
6. श्रीमद्भगवद्गीता (हिन्दी अनुवाद सहित), गीता प्रैस, गोरखपुर, 2015							
7. श्रीकृष्ण त्रिपात	ठी, श्रीमद्भगवद्गीता (द्वितीय, तृतीय एवं चतुर्थ अध्याय), 2005						
8. देवीदत्त शर्मा,	भाषिकी और संस्कृत भाषा, हरियाणा साहित्य अकादमी, चण्डीगढ़, 1990						
9. कपिलदेव द्विव	ोदी, भाषा-विज्ञान एवं भाषा-शास्त्र, विश्वविद्यालय प्रकाशन, चौक, वाराणसी, 2012						
10. कर्णसिंह, भा	षाविज्ञान, साहित्य भण्डार, मेरठ						
11. Burrow, T	T., The Sanskrit Language, 2016						
12. Gune, P.D	., An Introduction to Comparative Philology, Oriental Book House, Poona, 1958						
13. The Taittin	īya Upanişad, Eng. Tr. and Commentary by Swami Muni Narayana Prasad, D.k. Print world (P)	,					
Ltd., New	Delhi-2009						
14. The NĪti a	nd Vairāgya Śatakas of Bhartrihari, M.R. Kale, Motilal Banarsidass, Delhi, 2017						

SEMESTER – II

Course	Course Name: Real Analysis				Course Code: SBSMAT 03 02 01 C			
No: 05		5106						
Batch:	Programme:	Semester:	L	Τ	Р	Credits	Contact	
							Hrs per	
	Integrated						Week:	
2021-2026	B.ScM.Sc.	II					06	
2021 2020	(Mathematics)							
	(Wathematics)		5	1	0		Tatal	
			5	1	0	0	Total	
							Hours: 90	
Total Evalua	ation Marks:	Examinatio	n Duration	:	3 hours			
100								
		D · ·	4 C					
CIE:		Pre-requisit	te of course:					
TEE:								
Course	This course prese	ents a rigorou	is treatment	of fundame	ental concepts i	n analysis. '	To introduce	
Objective	students to the fu	e fundamentals of mathematical analysis and reading and writing mathematical						
	proofs. The cour	urse objective is to understand the axiomatic foundation of the real number						
	system, in particu	icular the notion of completeness and some of its consequences; understand the						
	concepts neighbo	eighborhood of a point, countable sets, sequence and series, rigorously defined;.						
	Students should	udents should also have attained a basic level of competency in developing their own						
	mathematical arguments and communicating them to others in writing							
Course	A ftor going	through this	a a a a a a a a a a a a a a a a a a a	atudanta wi	11 ha ahla ta			
Course	After going	g unrough this	s course the	students wi	li de able to			
Outcomes:	• Identify	the propertie	es of the n	umber syst	tem and Desc	ribe variou	s analytical	
	properties	s of the real r	number syst	em.				
	• Explain t	he concept o	f sequences	and their	types and Iden	tify the cor	vergence of	
	sequences	and series of	positive ter	ms.				
	Apply var	rious importar	nt convergen	ce tests to th	ne given series.			
	• Understar	nd the diffe	erence betw	veen condit	ional and ab	solute con	vergence of	
	alternating	alternating series.						
Unit No.		Content of Each Unit Hours of						

		Each Unit				
Ι	Review of Algebraic and Order Properties of <i>R</i> , neighborhood of a point in	23				
	R, Idea of countable sets, uncountable sets and uncountability of R. Bounded					
	above sets, Bounded below sets, Bounded Sets, Unbounded sets, Suprema					
	and Infima, The Completeness Property of <i>R</i> , The Archimedean Property.					
II	Density of Rational (and Irrational) numbers in <i>R</i> , Intervals. Limit points of a	23				
	set, Isolated points, Illustrations of Bolzano-Weierstrass theorem for sets.					
	Sequences, Bounded sequence, Convergent sequence, Limit of a sequence.					
III	Limit Theorems, Monotone Sequences, Monotone Convergence Theorem.	22				
	Subsequences, Divergence Criteria, Monotone Subsequence Theorem					
	(statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy					
	sequence, Cauchy's Convergence Criterion.					
IV	Infinite series, convergence and divergence of infinite series, Cauchy	22				
	Criterion, Test for Convergence: Comparison test, Limit Comparison test,					
	Ratio Test, Cauchy's n th root test, Integral test, Alternating series, Leibniz					
	test, Absolute and Conditional convergence.					
Books	Recommended:					
1.	R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley ar (Asia) Pvt. Ltd., Singapore, 2002, (Textbook).	nd Sons				
2.	I. Kumar and S. Kumarasen, A Basic Course in Real Analysis, CRC Press, 2014, (Te	extbook).				
3.	3. G. B. Thomas and R. L. Finney, Calculus, Pearson, 9th Ed, 2005.					
4.	 G. G. Bilodeau , P. R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett,2010. 					
5.	S. Thomson, A. M. Bruckner and J. B. Bruckner, Elementary Real Analysis, Prentice	Hall, 2001.				
6.	S.K. Berberian, A First Course in Real Analysis, Springer Verlag, New York, 1994.					

Course	Course Name: Differential Equations (P)			Course Code: SBSMAT 03 02 02				
No: 06					C 4046			
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact Hrs	
	Integrated						per Week:	
	B.ScM.Sc.						08	
2021-2026	(Mathematics)	Π						
			4	0	4	6	Total	
							Hours: 120	
Total Evalu	ation Marks:	Examinatio	on Durati	on:	3 ho	urs		
100								
CIE:		Pre-requisite of course: N.A.						
TEE:	:							
Course	The objective of this course is to introduce ordinary differential equations, general,							
Objective	particular, explicit, implicit and singular solutions of a differential equation. This							
	course further ex	course further explains the analytic techniques in computing the solutions of various						
	ordinary differen	tial equation	s.					
Course								
Outcomes:	After going	through this	s course t	he studen	ts will be a	able to		
• Use the techniques to solve differential equations and apply the						and apply th	these techniques	
	in variou	s mathematic	al models	used in re	eal life pro	blems.		
	• Be fami	liar with fo	rmation of	of differen	ntial equa	tions and t	o solve exact	
	differenti	al equations	by finding	g integratii	ng factors.			
	• Find solu	tion of Lagr	ange's eq	uations, C	lairauts eq	uations and	other standard	
	equations	s of first orde	r but not o	of first deg	gree.			
	• Learn th	e concept	of auxili	ary equa	tion, parti	cular integ	ral for linear	
	differenti	al equations	with cons	tant co-eff	ficients and	l their solution	on	
Unit No.		C	content of	f Each Un	it		Hours of	
]					Each Unit	
Ι	Differential ed	quations ar	nd math	ematical	models.	General,	22	
	particular, explicit, implicit and singular solutions of a differential							

	equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	
II	Introduction to compartmental model, exponential decay model, lake pollution model (case study of Lake Burley Griffin), drug assimilation into the blood (case of a single cold pill, case of a course of cold pills), exponential growth of population, limited growth of population, limited growth with harvesting.	23
III	General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients.	23
IV	Euler's equation, method of undetermined coefficients, method of variation of parameters. Equilibrium points, Interpretation of the phase plane, predatory-prey model and its analysis, epidemic model of influenza and its analysis, battle model and its analysis.	22

List of Practical (using any software)

- 1. Plotting of second order solution family of differential equation.
- 2. Plotting of third order solution family of differential equation.
- 3. Growth model (exponential case only)
- 4. Decay model (exponential case only).
- 5. Lake pollution model (with constant/seasonal flow and pollution concentration).
- 6. Case of single cold pill and a course of cold pills.
- 7. Limited growth of population (with and without harvesting).
- 8. Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one predator).

9. Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).

10. Battle model (basic battle model, jungle warfare, long range weapons).

- 11. Plotting of recursive sequences.
- 12. Study the convergence of sequences through plotting.

Books Recommended:

- 1. S.L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004, (Textbook).
- 2. E. A. Coddington, An Introduction to Ordinary Differential Equation, Dover Publications, 1961, (**Textbook**).
- 3. G. R. Fulford, Mathematical Modeling with Case Studies, A Differential Equation Approach using Maple and Matlab, 2nd Ed., Taylor and Francis group, London and New York, 2009.
- 4. C.H. Edwards and D.E. Penny, Differential Equations and Boundary Value problems Computing and Modeling, Pearson Education India,2005.
- 5. M. L. Abell, J. P. Braselton, Differential Equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press,2004.

Course	Course Name: हिंदी भाषा : रचना एवं व्यवहार .				Course Code: SBSMAT 03 02 01				
No: 07				AECC 3104					
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact Hrs		
							per Week:		
	Integrated	II					04		
2021-	B.ScM.Sc.		3	1	0	4	Total Hours:		
2026	(Mathematics)						60		
Total Eval	uation Marks:	Examinatio	on Duratio	on:	3 hours	1			
100									
CIE:		Pre-requisi	Pre-requisite of course:						
TEE:									
Course	• भाषा, व्याकरण एवं साहित्य के सामान्य स्वरूप का निदर्शन।								
Objective									
Course	 भाषा, बोली और व्याकरण के विविध घटकों का परिचय। 								
Outcome									
s:	 सचार माध्यमा क स्वरूप आर भाषा का ज्ञान। 								
	• रचना पाठ से साहित्य बोध।								
Linit No.			Tontont of	FEach II			Hours of		
Unit No.		(111		Hours of		
T		عاملهم							
1	मापा का पारमापा एव ।	वरापताए					15		
	भाषा और व्याकरण								
	हिंदी की ध्वनियों का व	र्गीकरण (स्वर, व्य	ांजन और वर्तन	नी)					
п	हिंदी भाषा व बोलियों व	का संक्षिप्त परिचय					15		
	 हिंदी की संवैधानिक स्थि	थति : राजभाषा, स	ांपर्क भाषा औ	र राष्ट्रभाषा					
	कायालया हिंदा : पल्लवन, संक्षपण, टिप्पण								
	पत्र लेखन : सरकारी, अ	ार्द्ध-सरकारी							

III		संचार माध्यमों का स्वरूप एवं भाषा	15			
		संचार माध्यमों का सामाजिक प्रभाव				
		कंप्यूटर में हिंदी का अनुप्रयोग				
IV		कहानी : चंद्रधर शर्मा 'गुलेरी' : उसने कहा था; प्रेमचंद : नशा	15			
		निबंध : हजारी प्रसाद द्विवेदी : नाखून क्यों बढ़ते हैं; बालमुकुंद गुप्त : बनाम लार्ड कर्जन				
		कविता : सूर्यकांत त्रिपाठी 'निराला' : वर दे, वीणा वादिनी वर दे ! जयशंकर प्रसाद : हिमाद्रि				
		तुंग शृंग से				
अनुशंसि	रत पुस्त	तकें :				
1.	हिंदी	: उद्भव, विकास और रूप; डॉ हरदेव बाहरी; किताब महल इलाहाबाद; 1969.				
2.	हिंदी	भाषा; डॉ भोलानाथ तिवारी; किताब महल, इलाहाबाद; 2004.				
3.	हिंदी	व्याकरण; कामता प्रसाद गुप्त; नागरी प्रचारिणी सभा, काशी; 1927.				
4.	4. व्यावहारिक हिंदी व्याकरण तथा रचना; हरदेव बाहरी; लोकभारती प्रकाशन, इलाहाबाद; 1972.					
5.	कंप्यूत	रर और हिंदी; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2015.				
6.	रेडिये	ो और दूरदर्शन पत्रकारिता; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2017.				

Course	Course Name: English			Course Code: SBSMAT 03 02 02				
No: 08					AECC 3104			
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact Hrs	
							per Week:	
	Integrated	II					04	
2021-	B.ScM.Sc.		3	1	0	4	Total Hours:	
2026	(Mathematics)						60	
Total Eval	uation Marks:	Examination Duration: 3 hours						
100								
CIE:		Pre-requisi	ite of cour	se:				
TEE:								
Course	The purpose of this course is to introduce students to the theory, fundamentals and tools							
Objective	of communication and to develop in them vital communication skills which should be							
	integral to personal, social and professional interactions. One of the critical links among							
	human beings and an important thread that binds society together is the ability to share							
	thoughts, emotions and ideas through various means of communication: both verbal and							
	non-verbal. In th	on-verbal. In the context of rapid globalization and increasing recognition of social and						
	cultural pluralities, the significance of clear and effective communication has substantially							
	enhanced.	hanced.						
Course	The preser	t course hop	bes to addr	ess some	of these a	spects throug	th an interactive	
Outcome	mode of teach	ing-learning	process	and by	focusing	on various	dimensions of	
s:	communication s	kills. Some o	of these are	:	6			
	Language	of commu	inication,	various	speaking	skills suc	h as personal	
	communication,	social interac	ctions and	communic	cation in p	rofessional si	tuations such as	
	interviews, group	discussions	and office	environm	ents, impo	rtant reading	skills as well as	
	writing skills suc	h as report w	riting, note	etaking etc		C		
	While, to a	an extent, the	e art of c	ommunica	tion is nat	tural to all l	iving beings, in	
	today's world of	today's world of complexities, it has also acquired some elements of science. It is hoped						
	that after studyi	ng this cour	rse, studen	ts will fi	nd a diffe	rence in the	ir personal and	
	professional interactions.							
Unit No.	Content of Each Unit Hours of							

		Each Unit				
Ι	Introduction: Theory of Communication, Types and modes of	15				
	Communication. Language of Communication: Verbal and Non-verbal					
	(Spoken and Written) Personal, Social and Business Barriers and					
	Strategies Intra-personal, Inter-personal and Group communication					
II	Speaking Skills: Monologue Dialogue, Group Discussion, Effective	15				
	Communication/ Mis- Communication, Interview Public Speech					
III	Reading and Understanding, Close Reading, Comprehension Summary,	15				
	Paraphrasing, Analysis and Interpretation, Translation(from Indian					
	language to English and vice-versa) ,Literary/Knowledge Texts					
IV	Writing Skills, Documenting, Report Writing, Making notes, Letter	15				
	writing					
Books Rec	ommended :					
1. Flue	ency in English - Part II, Oxford University Press, 2006.					
2. Bus	2. Business English, Pearson, 2008.					
3. Lan	guage, Literature and Creativity, Orient Blackswan, 2013.					
4. Lan	guage through Literature (forthcoming) ed. Dr. Gauri Mishra, Dr Ranjana K	aul, Dr Brati				

Biswas
			Maximum Marks				
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks	
SBSMAT 03 03 01 C 5106	Multivariable Calculus	6	105	45	-	150	
SBSMAT 03 03 02 C 5106	Group Theory	6	105	45	-	150	
SBSMAT 03 03 03 C 5106	Probability and Statistics	6	105	45	-	150	
SEC1		4	70	30	-	100	
GE3		6	105	45	-	150	
Total marks of Semester-III							

SEMESTER – III

Course	Course Name: Multivariable Calculus				Course Code: SBSMAT 03 03 01 C		
No: 09					5106		
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact
							Hrs per
	Integrated						Week:
2021-2026	B.ScM.Sc.	III					06
	(Mathematics)						
			5	1	0	6	Total
							Hours: 90
Course	To understand th	e extension of	f the studies	s of single va	ariable differen	tial and inte	gral calculus
Objective	to functions of tw	wo or more in	ndependent	variables. A	lso, the empha	sis will be o	on the use of
	Computer Algebr	a Systems by	which these	e concepts m	ay be analyzed	and visualiz	zed to have a
	better understand	ing.					
Course	After going	through this	course the	students wi	11 be able to		
Outcomos	Arter going	g unough uns	course the	students wi			
Outcomes.	• Learn con	nceptual varia	ations while	e advancing	from one varia	able to sever	ral variables
	in calculu	18.					
	Apply m	ultivariable ca	alculus in o	ptimization	problems.		
	• Inter-rela	tionship amo	ngst the lin	e integral, d	ouble and tripl	le integral fo	ormulations.
	 Applicati 	ons of multi	variable ca	lculus tools	in physics, ed	conomics, o	ptimization,
	and unde	rstanding the	architectur	e of curves a	and surfaces ir	n plane and s	space etc.
	• Realize i	mportance of	f Green, G	auss and St	tokes' theorem	ns in other	branches of
	mathema	tics.					
	L						Hours of
		Cont	tent of Eacl	n Unit			Each Unit
Unit-I: Parti	al Differentiation						18
Functions of	several variables	, Level curv	es and sur	faces, Limit	s and continu	ity, Partial	
differentiation	n, Tangent planes,	Chain rule, D	irectional d	erivatives, T	he gradient, M	aximal and	
normal prope	rties of the gradien	it, Tangent pla	anes and nor	rmal lines.			
Unit-II: Diff	erentiation						18

Highe	r order partial derivatives, Total differential and differentiability, Jacobians, Change of					
variables, Euler's theorem for homogeneous functions, Taylor's theorem for functions of two						
variab	les and more variables, Envelopes and evolutes.					
Unit-l	III: Extrema of Functions and Vector Field	18				
Extrem	na of functions of two and more variables, Method of Lagrange multipliers, Constrained					
optimi	ization problems, Definition of vector field, Divergence, curl, gradient and vector					
identit	ies.					
Unit-l	V: Double and Triple Integrals	18				
Doubl	e integration over rectangular and nonrectangular regions, Double integrals in polar co-					
ordina	tes, Triple integral over a parallelepiped and solid regions, Volume by triple integrals,					
Triple	integration in cylindrical and spherical coordinates, Change of variables in double and					
triple	integrals, Dirichlet integral.					
		18				
Unit-	V: Green's, Stokes' and Gauss Divergence Theorem	10				
Line i	integrals, Applications of line integrals: Mass and Work, Fundamental theorem for					
line ir	integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface					
megr	ars, stokes theorem, The Gauss divergence theorem.					
Refer	ences:					
1.	Jerrold Marsden, Anthony J. Tromba & Alan Weinstein (2009). Basic Multivariable	e Calculus,				
	Springer India Pvt. Limited.					
2.	James Stewart (2012). Multivariable Calculus (7th edition). Brooks/Cole. Cengage, (7	Fextbook).				
3.	Monty J. Strauss, Gerald L. Bradley & Karl J. Smith (2011). Calculus (3rd edition	n). Pearson				
	Education. Dorling Kindersley (India) Pvt. Ltd.					
4.	George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas'				
	Calculus (14th edition). Pearson Education, (Textbook).					

Course	Course Name: Group TheoryCourse Code: SBSMAT 03 03 02 C 5106							5	
No: 10									
Batch:	Program:	Sem: III	L		Т	Р	Credits	Contac	ct Hrs per
2021-26	Integrated							Week:	06
	BSc-MSc		5		1	0	6	Total	Hours: 90
	(Mathematics)								
Course	To introduce basic structures of algebra like group, dihedral groups, permutation								
Objective	Abelian group,	non-Abelia	n group	o an	d cyclic	group v	which are t	the main	pillars of
	modern group th	neory. The c	ourse g	ives	the stude	ent a goo	od mathem	atical m	aturity and
	enables to build r	nathematical	thinking	g an	d skill.				
Course	After going	g through thi	s course	e the	e students	will be a	able to		
Outcomes	Recognize	e the mathem	natical ol	hiec	ts called a	rouns			
	• Link the f	undomontal.		of	groups on	d symmo	trias of good	matrical	objects
	• Emil the f	ha aignifiaar	concepts	5 01 j	groups and		normal aut		ond factor
	• Explain t	ne significar	ice of t	ne i	iotions of	cosets,	normal sut	ogroups,	and factor
	groups.		C I		2 (1				
	• Analyze c	consequences	s of Lagr	rang	e's theore	m.			
	• Learn abo	out structure j	preservii	ng n	haps betwe	een group	ps and their	consequ	ences.
		Conte	ent of Ea	ach	Unit				Hours
Unit-I: Grou	ps and its Elemer	ntary Propen	rties						18
Symmetries	of a square, De	efinition and	d exam	ples	s of grou	ips inclu	uding dihe	edral,	
permutation a	and quaternion grou	ups, Element	ary prop	perti	es of grou	ps.			
Unit-II: Sub	groups and Cyclic	e Groups							18
Subgroups a	nd examples of	subgroups,	Cyclic g	grou	ips, Prope	erties of	cyclic gro	oups,	
Lagrange's th	neorem, Euler phi f	unction, Eule	er's theo	orem	, Fermat's	s little the	eorem.		
Unit-III: No	rmal Subgroups								18
Properties of	cosets, Normal su	bgroups, Sin	nple gro	oups,	, Factor gi	coups, Ca	uchy's the	orem	
for finite abo	elian groups; Cen	tralizer, Nor	malizer,	, Ce	enter of a	group,	Product of	two	
subgroups; C	lassification of sub	groups of cy	clic grou	ups.					

Unit-IV: Permutation Groups	18
Cycle notation for permutations, Properties of permutations, Even and odd permutations,	
alternating groups, Cayley's theorem and its applications.	
Unit-V: Group Homomorphisms, Rings and Fields	18
Group homomorphisms, Properties of homomorphisms, Group isomorphisms, Properties	
of isomorphisms; First, second and third isomorphism theorems for groups; Definitions	
and elementary properties of rings and fields.	
References:	
1. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage	,
(Textbook).	
2. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th edition). Pearson	n
(Textbook).	
3. Michael Artin (2014). Algebra (2nd edition). Pearson.	
4. I.N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India.	
5. Nathan Jacobson (2009). Basic Algebra I (2nd edition). Dover Publications.	
6. Ramji Lal (2017). Algebra 1: Groups, Rings, Fields and Arithmetic. Springer.	
7. I.S. Luthar & I.B.S. Passi (2013). Algebra: Volume 1: Groups. Narosa.	

Course	Course Name: Probability and StatisticsCourse Code: SBSMAT 03 03 03 C 510							C 5106			
No: 11											
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact	Hrs per			
2021-26	Integrated						Week:	06			
	BSc-MSc		5	1	0	6	Total H	ours: 90			
	(Mathematics)										
Course	To provide an u	To provide an understanding of the basic concepts in probability theory and statistical									
Objective	analysis. Students	s will learn th	ne fundament	al theory o	of distribu	tion of ran	dom varia	ables, the			
	basic theory and	techniques of	of parameter	estimation	and tests	s of hypoth	neses. Aft	er taking			
	this course, stude	ents will be a	ble to use ca	lculators a	nd tables	to perform	n simple s	statistical			
	analyses for smal	l samples an	d use popular	statistics	packages	, such as S	AS, SPSS	S, S-Plus,			
	R or MATLAB, t	to perform sin	mple and sop	histicated a	analyses	for large sa	mples.				
Course	After going	through this	course the s	tudents wi	ill be abl	e to					
Outcomes	• Understar	nd distributio	ons in the s	study of t	the joint	behaviou	r of two	random			
	variables.										
	• Establish	a formulation	n helping to p	predict one	e variable	in terms o	of the othe	er that is,			
	correlatio	n and linear 1	regression.								
	• Understar	nd central li	mit theorem,	which es	stablish t	he remark	able fact	that the			
	empirical	frequencies	of so many na	atural popu	lations, e	exhibit a be	ell shaped	curve.			
		Cor	ntent of Each	Unit				Hours			
Unit-I: Prob	ability Functions	and Momen	t Generating	Function	l			18			
Basic notion	s of probability,	Conditional	probability	and indep	endence,	Baye's t	heorem;				
Random vari	ables - Discrete	and continuo	ous, Cumulat	ive distrib	oution fu	nction, Pro	obability				
mass/density	functions; Trans	sformations,	Mathematic	al expect	ation, N	Ioments,	Moment				
generating fu	nction, Characteris	tic function.									
Unit II. Unit	variata Disarata a	nd Continuo	na Diatribut	long				19			
Diagrata dist	variate Discrete a			Magativa	hin and a	1 Carry	tuio and	10			
Discrete dist			, Dinomial,	Fregative		u, Geome	unc and				
POISSON; COI	nunuous aistributi	ions: Unifor	iii, Gamma,	Exponent	uai, Chi	-square, B	eta and				
normai; Norn	nai approximation	to the binom	iai distributio	11.							

Unit-III: Bivariate Distribution18Joint cumulative distribution function and its properties, Joint probability density function,
Marginal distributions, Expectation of function of two random variables, Joint moment
generating function, Conditional distributions and expectations.18

Unit-IV: Correlation, Regression and Central Limit Theorem

The Correlation coefficient, Covariance, Calculation of covariance from joint moment generating function, Independent random variables, Linear regression for two variables, The method of least squares, Bivariate normal distribution, Chebyshev's theorem, Strong law of large numbers, Central limit theorem and weak law of large numbers.

Unit-V: Modeling Uncertainty

Uncertainty, Information and entropy, Uniform Priors, Polya's urn model and random graphs.

References:

- 1. Irwin Miller & Marylees Miller (2014). John E. Freund's Mathematical Statistics with Applications (8thedition). Pearson. Dorling Kindersley Pvt. Ltd. India, (**Textbook**).
- Robert V. Hogg, Joseph W. McKean & Allen T. Craig (2013). Introduction to Mathematical Statistics (7th edition), Pearson Education.
- 3. Jim Pitman (1993). Probability, Springer-Verlag.
- 4. Sheldon M. Ross (2014). Introduction to Probability Models (11th edition). Elsevier.
- 5. M. Yaglom and I. M. Yaglom (1983). Probability and Information. D. Reidel Publishing Company. Distributed by Hindustan Publishing Corporation (India) Delhi.
- 6. V.K. Kapoor and S. C. Gupta (2018). Fundamental of Mathematical Statistics, S. Chand & Sons.

18

18

Course	Course Name:				Course Code: SBSMAT 03 03 01 SEC 3104			
No: 12	Logic, Sets and (Graph Theory	ý					
Batch:	Program:	Sem: III	L	Т	P	Credits	Contact	Hrs per
2021-26	Integrated						Week:	04
	BSc-MSc		3	1	0	4	Total H	ours: 60
	(Mathematics)							
Course	To introduce stud	lents with the	e fundame	ntal conc	epts in s	et, logic and	d graph the	eory, with a
Objective	sense of some	its modern	applicatior	ns. They	will be	able to u	se these	methods in
	subsequent cours	es in the desi	gn and ana	alysis of a	algorithn	ns, computal	bility theor	ry, software
	engineering, and	computer sys	stems.					
C	A francisco de la compañía de la comp	41141-1		4 1	4	1-1 - 4 -		
Course	After going	g through thi	s course ti	ne studen	its will d	e able to		
Outcomes	• Analyze	the truth and	l falsity o	f a logic	al staten	nent and di	fferentiate	between a
	logical sta	tement and a	n ordinary	v statemer	nt.			
	• Define an	d describe va	rious prop	erties of	sets.			
	• Describe	the fundamer	ntal proper	ties of Gr	aph The	ory.		
	• Identify d	ifferent repre	esentations	of a Gra	oh for pr	actical appli	cations.	
		I		1		11		1
								Hours
		Cont	tent of Ea	ch Unit				
Unit-I: Logio	2							12
Introduction,	propositions,	truth table	e, negatio	on, con	junction	and dis	junction.	
Implications	, biconditional	propositions	s, conver	rse, con	itra pos	sitive and	inverse	
propositions	and precedence	of logical	operators.	Proposi	tional e	quivalence:	Logical	
equivalences	. Predicates and q	uantifiers: In	ntroductio	n, Quant	ifiers, B	inding varia	ables and	
Negations.								
Unit_II. Set "	Theory							12
Sete enheate	Set operations of	nd the lowe	of set the	ory and V	Jenn die	arame Evo	mples of	12
finite and int	, set operations a	nu lite laws	of set the	oinlo E~		properties	of omntry	
and Stondard	ant operations C			ot of a sa	ıpıy set, ≁	properties	or empty	
		125555 01 5815	s. ruwei s	et of a se	ι.			

Unit-III: Relation on Sets	12
Difference and Symmetric difference of two sets. Set identities, generalized union and	
intersections. Relation: Product set, Composition of relations, Types of relations,	
Partitions, Equivalence Relations with example of congruence modulo relation, Partial	
ordering relations, n-ary relations.	
Unit-IV: Graph Theory	12
Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi-	
partite graphs, isomorphism of graphs, paths and circuits, Eulerian circuits, Hamiltonian	
cycles.	
Unit-V: Application of Graph Theory	12
The adjacency matrix, weighted graph, travelling salesman's problem, shortest path,	
Dijkstra's algorithm, Floyd- Warshall algorithm, Tree, Binary tree, rooted tree, spanning tree.	
References:	
1. Rosen, K. H. Discrete Mathematics and Its Applications. 7th edition, Tata McGraw	Hill,
2011, (Textbook).	
2. E. G. Goodaire and M. M. Parmenter, Discrete Mathematics with Graph Th	eory, 2nd
Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003, (Textbook).	
3. R.P. Grimaldi, Discrete Mathematics and Combinatorial Math	ematics,
Pearson Education, 2018.	
 Lipschutz, S., Lipson, M.L. and Patil, V.H. <i>Discrete Mathematics</i>. Schaum's Outline Se McGraw-Hill Education, 2020. 	ries, Tata
5 RA Devey and HA Priestley Introduction to Lattices and Order Combridge	University

B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge,1990.

Course	Course Name: Computer Fundamentals			Course Code: SBSMAT 03 03 02 SEC 3024					
No: 13	and Programming	g in C							
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact	Hrs per	
2021-26	Integrated						Week:	05	
	BSc-MSc 3 0 2 4 Total Hou							ours: 75	
	(Mathematics)								
Course	To familiarize the	e students wi	th problem so	olving thro	ugh C	programmi	ng. The co	urse aims	
Objective	to give exposure	to basic co	oncepts of th	e C-progr	ammin	g. The lab	componer	nt of this	
	course is designed	d to provide	hands-on-trai	ning with (the con	cepts.			
Course	After going	through thi	s course the	students w	vill be	able to			
Outcomes		, unougn un	s course the						
outcomes	• Write and	l run a C pro	ogram along	with gradu	ual im	provement u	using effici	ient error	
	handling.								
	• Implement	t selective	structures ar	nd repetiti	ve str	uctures in	C program	ns using	
	different o	control staten	nents.						
	• To empha	size on the in	mportance of	use of poin	nters fo	or efficient C	C programi	ning.	
	• Use struct	ures and uni	ons in a C pro	ogram for l	handlir	ng multivaria	ate data.		
		~							
		Cor	itent of Each	Unit				Hours	
Unit-I: C La	nguage Prelimin	aries						15	
An overview	of Programming	, Programmi	ng Language	e, Classifio	cation.	Basic struc	cture of a		
C Program,	C language prel	iminaries. (Operators an	d Express	sions,	Bit - Man	ipulation		
Operators, B	itwise Assignmen	t Operators,	Decisions a	and loopin	ng.				
Unit-II. Arr	avs and Pointers							15	
Arrays and I	ointers Encrupti	on and Deci	runtion Poi	nter Arith	metic	Passing De	vinters as	15	
Arrays and Pointers, Encryption and Decryption. Pointer Arithmetic, Passing Pointers as									
Function Ar	numents Multidi	monsional A		of Doint	ore D	rassing A	vintora		
runction Arg	Function Arguments. Multidimensional Arrays. Arrays of Pointers, Pointers to Pointers.								

Unit-III: Storage Classes	15					
Storage Classes -Fixed vs. Automatic Duration. Scope. Global Variables. Definitions and						
Allusions. The Register Specifier. ANSI rules for the Syntax and Semantics of the Storage						
Class Keywords.						
Unit-IV: Structures and Unions	15					
Dynamic Memory Allocation. Structures and Unions. enum declarations. Passing						
Arguments to a Function, Declarations and Calls, Automatic Argument Conversions,						
Pointers to Functions.						
Unit-V: C Preprocessors	15					
The C Preprocessors, Macro Substitution. Include Facility. Conditional Compilation. Line						
Control. Input and Output -Streams. Buffering. Error Handling. Opening and Closing a File.						
Reading and Writing Data. Selecting an I/O Method. Unbuffered I/O. Random Access. The						
Standard Library for I/O.						
References:						
1. Y. Kanetkar (2020), Let us C, 15 th edition, BPB Publication, (Textbook).						
2. Brian W. Kernighan & Dennis M. Ritchie, The C Program Language, Second Editio	n (ANSI					
features), Prentice Hall 2019.						
3. Peter A. Darnell and Philip E. Margolis, C: A Software Engineering Approach	Narosa					
Publishing House (Springer International Student Edition) 2003.						
4. Samuel P. Harkison and Gly L. Steele Jr., C: A Reference Manual, Second Edition,	Prentice					
Hall, 2014.						
5. Balagurusamy E: Programming in ANSI C, Third Edition, Tata McGraw-Hill Pu	blishing					
Co. Ltd., 2018.	U					
6. Byron, S. Gottfried: Theory and Problems of Programming with C, Second Edition (Schaum					
Outline Series), Tata McGraw-Hill Publishing Co. Ltd., 2017.	•					
7. Venugopal K. R. and Prasad S. R.: Programming with C, Tata McGraw-Hill Publishi	ng Co.					
Ltd., 2020.						

Course	Course Name: ******			Course Code: ****** GE 5106			
No: 14	GE3						
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact Hrs
2021-26	Integrated BSc-MSc						per Week: 6
	(Mathematics)		5	1	0	6	Total
							Hours: 90

SEMESTER – IV

				rks				
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks		
SBSMAT 03 04 01	Mechanics	6	105	45	-	150		
C 5106								
SBSMAT 03 04 02	Linear Algebra	6	105	45	-	150		
C 5106								
SBSMAT 03 04 03	Partial Differential	6	105	45	-	150		
C 5106	Equations and Calculus of Variation							
SEC1		4	70	30		100		
GE4		6	105	45	-	150		
	Total marks of Semester-IV							

Course	Course Name: Mechanics			Course Code: SBSMAT 03 04 01 C 5106				
No: 15								
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Cont	act Hrs per
2021-26	Integrated						Week	k: 08
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	This course aim	s to impart kno	owledg	e in m	echanic	s used for	the de	erivation of
Objective	important results	and problems r	elated	to rigid	l bodies	. The objec	tive is	to give the
	students a mechai	nical approach fo	or solv	ing the	problem	ns related to	the me	chanics.
Course	After going	through this co	ourse t	he stud	ents wil	ll be able to		
Outcomes	 After going through this course the students will be able to Familiarize with subject matter, which has been the single centre, to which wer drawn mathematicians, physicists, astronomers, and engineers together. Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body. Determine the centre of gravity of some materialistic systems and discuss the equilibrium of a uniform cable hanging freely under its own weight. Deal with the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles. Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton. 							
								Hours
Content of Each Unit								
Unit-I: Statio	28							18
Equilibrium o	of a particle, Equili	brium of a syste	m of p	articles	, Necess	sary condition	ons of	
equilibrium,	Moment of a for	ce about a poi	nt, Mo	oment o	of a for	rce about a	line,	
Couples, Mo	ment of a couple	e, Equipollent s	ystem	of for	es, Wo	ork and pot	ential	
anamory Dringinla of virtual work for a system of apple of farmer farmer acting on a particle of								

Unit-II: Centres of Gravity and Common Catenary	18					
Centres of gravity of plane area including a uniform thin straight rod, triangle, circular						
arc, semicircular area and quadrant of a circle, Centre of gravity of a plane area						
bounded by a curve, Centre of gravity of a volume of revolution; Flexible strings,						
Common catenary, Intrinsic and Cartesian equations of the common catenary,						
Approximations of the catenary.						
	10					
Unit-III: Rectilinear Motion	18					
Simple harmonic motion (SHM) and its geometrical representation, SHM under elastic						
forces, Motion under inverse square law, Motion in resisting media, Concept of						
terminal velocity, Motion of varying mass.						
Unit-IV: Motion in a Plane	18					
Kinematics and kinetics of the motion, Expressions for velocity and acceleration in Cartesian, polar and intrinsic coordinates; Motion in a vertical circle, projectiles in a vertical plane and cycloidal motion.						
Unit-V: Central Orbits						
Equation of motion under a central force, Differential equation of the orbit, (p, r)						
equation of the orbit, Apses and apsidal distances, Areal velocity, Characteristics of						
central orbits, Kepler's laws of planetary motion.						
References:						
1. S. L. Loney (2006). An Elementary Treatise on the Dynamics of a Particle and	nd of Rigid					
Bodies. Read Books, (Textbook).						
2. P. L. Srivatava (1964). Elementary Dynamics. Ram Narin Lal, Beni Prasad	Publishers					
Allahabad,						
3. J. L. Synge & B. A. Griffith (1949). Principles of Mechanics. McGraw-Hill.						
4. A. S. Ramsey (2009). Statics. Cambridge University Press.						
5. A. S. Ramsey (2009). Dynamics. Cambridge University Press.						
6. R. S. Varma (1962). A Text Book of Statics. Pothishala Pvt. Ltd.						

Course	Course Name: Linear Algebra				Course Code: SBSMAT 03 04 02 C 5106			
No: 16								
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact H	Irs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total I	Hours: 90
	(Mathematics)							
Course	The objective of	the course is	to int	roduce	e basic	structures of algel	ora like mat	rices, system
Objective	of linear equation	n and linear	transf	ormati	on, veo	ctor space, linear t	ransformati	on and inner
	product spaces w	which are the	mair	n pillar	rs of m	odern mathematic	cs. The cou	rse gives the
	student a good m	athematical r	naturi	ty and	enable	es to build mathem	atical thinki	ng and skill.
Course	After going	g through thi	s cou	rse the	stude	nts will be able to		
Outcomes								
	• Understar	id the conce	pts of	vecto	r spac	es, subspaces, bas	ses, dimensi	on and their
	properties			_				
	• Relate ma	trices and lin	near ti	ansfor	mation	is, compute eigen	values and o	eigen vectors
	of linear t	ransformatio	ns.					
	• Learn pro	operties of i	nner	produc	et spac	es and determine	orthogona	lity in inner
	product sp	paces.						
	Realise in	nportance of	adjoir	nt of a	linear t	ransformation and	its canonic	al form.
		Cont	ent of	f Each	Unit			Hours
Unit-I: Vecto	or Spaces							18
Definition an subspaces, Li	nd examples, Sul nearly independen	ospace, Line t and depend	ear sp ent se	oan, Q ts, Bas	uotien es and	t space and dire dimension.	ect sum of	
Unit-II: Line	ear Transformatio	ons						18
Definition a	nd examples, A	lgebra of	linear	tran	sforma	tions, Matrix of	f a linear	
transformatio	n, Change of coord	dinates, Rank	and a	nullity	of a li	near transformatio	n and rank-	
nullity theorem.								
Unit-III: Fur	ther Properties o	f Linear Tra	ansfor	matio	ns			18
Isomorphism	of vector spaces,	Isomorphism	n theo	orems,	Dual	and second dual of	of a vector	
space, Transpose of a linear transformation, Eigen vectors and eigen values of a linear								
transformatio	n, Characteristic	polynomia	l and	l Cay	eley-Ha	amilton theorem,	Minimal	
polynomial.								

Unit-IV: Inner Product Spaces	18						
Inner product spaces and orthogonality, Cauchy-Schwarz inequality, Gram-Schmidt	l						
orthogonalisation, Diagonalisation of symmetric matrices.	1						
Unit-V: Adjoint of a Linear Transformation and Canonical Forms	18						
Adjoint of a linear operator; Hermitian, unitary and normal linear transformations; Jordan							
canonical form, Triangular form, Trace and transpose, Invariant subspaces.							
References:							
1. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003). Line	ar Algebra,						
(4thedition). Prentice-Hall of India Pvt. Ltd, (Textbook).							
2. Vivek Sahai & Vikas Bist (2013). Linear Algebra (2nd Edition). Narosa Publish	hing House,						
(Textbook).							
3. Kenneth Hoffman & Ray Kunze (2015). Linear Algebra (2nd edition). Prentice-Ha	all.						
4. M. Gel'fand (1989). Lectures on Linear Algebra. Dover Publications.							
5. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications.	5. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications.						
6. Serge Lang (2005). Introduction to Linear Algebra (2nd edition). Springer India.							

7. Gilbert Strang (2014). Linear Algebra and its Applications (2nd edition). Elsevier.

Course	Course Name: Partial Differential				Course Code: SBSMAT 03 04 03 C 5106					
No: 17	Equations and Calculus of Variations									
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact	Hrs per		
2021-26	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Total H	ours: 90		
	(Mathematics)									
Course	To introduce parti	al differential e	quations	, general, j	particular	, explicit, im	plicit and	singular		
Objective	solutions of a p	artial different	ial equa	tion. This	course	further exp	lains the	analytic		
	techniques in com	techniques in computing the solutions of various partial differential equations.								
Course	After going	through this co	ourse the	e students	will be a	ble to				
Outcomes	• Apply a ra equations.	• Apply a range of techniques to solve first & second order partial differential equations.								
	• Model physical phenomena using partial differential equations such as the heat									
	and wave equations.									
	• Understar	nd problems, m	ethods a	nd technic	ques of ca	lculus of va	riations.			
		Conten	t of Eacl	n Unit				Hours		
Unit-I: First	Order Partial Dif	fferential Equa	tions					18		
Order and de	egree of Partial dif	ferential equati	ons (PD	E), Conce	pt of line	ar and non-	linear			
partial differ	ential equations, l	Partial different	tial equa	tions of t	he first o	order, Lagra	nge's			
method, Som	ne special type of ea	quation which c	an be so	lved easily	by meth	ods other tha	an the			
general meth	od, Charpit's gener	al method.								
Unit-II: See	cond Order Part	tial Differentia	al Equa	tions wit	h Const	ant Coeffic	cients	18		
Classification	n of linear partial d	ifferential equat	tions of s	econd ord	er, Homo	geneous and	l non-			
homogeneou	homogeneous equations with constant coefficients.									
Unit-III: Second Order Partial Differential Equations with Variable Coefficients								18		
Partial differ	ential equations re-	ducible to equa	tions wit	th constant	t coefficie	ent, Second	order			
PDE with variable coefficients, Classification of second order PDE, Reduction to canonical										
or normal fo	orm; Monge's met	hod; Solution of	of heat a	ind wave	equations	s in one and	ł two			
dimensions b	by method of separa	tion of variable	s.							

Unit-IV: Calculus of Variations-Variational Problems with Fixed Boundaries	18						
Euler's equation for functional containing first order and higher order total derivatives,							
Functionals containing first order partial derivatives, Variational problems in parametric							
form, Invariance of Euler's equation under coordinates transformation.							
Unit-V: Calculus of Variations-Variational Problems with Moving Boundaries	18						
Variational problems with moving boundaries, Functionals dependent on one and two							
variables. One sided variations. Sufficient conditions for an extremum-Jacobi and Legendre							

conditions, Second variation.

References:

- 1. I. N. Sneddon (2006). Elements of Partial Differential Equations. Dover Publications, (Textbook).
- 2. A. S. Gupta (2004). Calculus of Variations with Applications. PHI Learning, (Textbook).
- 3. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley.
- 4. TynMyint-U & Lokenath Debnath (2013). Linear Partial Differential Equation for Scientists and Engineers (4th edition). Springer India.
- 5. H. T. H. Piaggio (2004). An Elementary Treatise on Differential Equations and Their Applications. CBS Publishers.
- 6. S. B. Rao & H. R. Anuradha (1996). Differential Equations with Applications. University Press.
- L.C. Evans (2014), Partial Differential Equations, American Mathematical Society, Indian 2nd edition.

Course	Course Name: Object Oriented				Course Code: SBSMAT 03 04 01 SEC 3024					
No: 18	Programming in	C++								
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Conta	ct Hrs per		
2021-26	Integrated						Week	: 05		
	BSc-MSc		3	0	2	4	Tota	l Hours: 75		
	(Mathematics)									
Course	This course intro	This course introduces C++ programming in the idiom and context of mathematics and								
Objective	imparts a starting orientation using available mathematical libraries, and their applications.									
Course	After going	g through this c	ourse th	ne studen	ts will be	able to				
Outcomes										
					ai probleti	15.				
	Design algorithms to solve problems.									
	Understand the OOPS likes Encapsulation, Data Abstraction, Inheritance and Polymorphism									
	r orymorphism.									
	Emphasiz programn	e on the importaning.	ance of	use of Fri	end Funct	ions for eff	icient C	++		
	I	Content	of Eacl	n Unit				Hours		
Unit-I Chara	acteristics of Obje	ct-Oriented Pr	ogrami	ning Lar	iguages			15		
OOP Paradi	gm: Comparison	of Programmi	ng para	digms, O	Characteri	stics of O	bject-			
Oriented Pro	ogramming Langu	ages, Object-b	ased pr	ogrammi	ing langu	ages C++:	Brief			
History of C	C++,Structure of a	a C++ progran	n, Diffe	erence be	etween C	and C++	- cin,			
cout, new, o	delete operators,	ANSI/ISO Sta	andard	C++, C	omments,	Working	with			
Variables and	d const Qualifiers	. Enumeration,	Arrays	and Poir	nter.					
Unit-II Impl	ementing OOPS (Concepts in C+	+					15		
Implementing oops concepts in C++ Objects, Classes, Encapsulation, Data							Data			
Abstraction,	Inheritance, Poly	morphism, Dyı	namic E	Binding,	Message	Passing, De	efault			
Parameter Value, Using Reference variables withFunctions.										
Unit-III Abs	tract Data Types							15		
Abstract data types, Class Component, Object & Class, Constructors Default and Copy										

Constructor, Assignment operator deep and shallow coping, Access modifiers -							
private, public and protected.							
Unit-IV Implementing Class Functions	15						
Implementing Class Functions within Class declaration or outside the Class							
declaration. Instantiation of objects, Scope resolution operator, Working with Friend							
Functions, Using Static Class members. Understanding Compile Time, Polymorphism,							
function overloading, Rules of Operator Overloading (Unary and Binary) as member							
function/friend function,							
Unit-V Implementation of Operator Overloading	15						
Implementation of operator overloading of Arithmetic Operators, Overloading							
Output/Input,Prefix/ Postfix Increment and decrement Operators, Overloading comparison							
operators, Assignment, subscript and function call Operator, concepts of namespaces.							
References:							
1. A. R. Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, TMH, 1997, ((Textbook).						
2. S. B. Lippman and J. Lajoie, C++ Primer, 3rd Ed., Addison Wesley, 2000, (Tex	tbook).						
3. B. Eckel, Thinking in C++, 2nd Ed., President, Mindview Inc., Prentice Hall.							
4. D. Parasons, Object Oriented Programming with C++, BPB Publication.							
5. B. Stroustrup, The C++ Programming Language, 3rd Ed., Addison Welsley.							

Course	Course Name: Linux Operating System Course Code: SBSMAT 03 04 02 SEC 3104										
No: 19	and Computer G	and Computer Graphics									
Batch:	Program:Sem: IVLTPCreditsContact Hrs per										
2021-26	Integrated						Week: 04				
	BSc-MSc										
	(Mathematics)		3	1	0	4	Total Hours: 60				
Course	This course intro	duces the Ro	ble and	purpose (of the oper	rating system,	Functionality of a				
Objective	typical operating	g system, ma	anaging	atomic	access to	OS objects. l	Detailed study of				
	computer graphic	es, 2 D and 3 I	O transf	ormations	s, represent	tations and visu	alization.				
Course	After going	g through this	course	the stude	ents will b	e able to					
Outcomes	 Outcomes Test the Linux process model and explain how Linux schedule processes and provide inter- process communication Explore how linux implements files systems and manages input output devices. Identify the core concepts of computer graphics Apply graphics programming techniques to create and design computer graphics scans 										
							Hours				
		Conte	nt of Ea	ach Unit							
Unit-I Linux	a – The Operating	System	• ,	T ' C	. .	• • • • •	12				
Linux – The	e Operating Syste	em: Linux h	1story,	Linux fe	eatures, L	inux distributi	ons,				
Linux's rela	tionship to Unix,	, Overview o	of Linu	x archite	ecture, Ins	tallation, Star	up				
scripts, syste	m processes (an o	overview), Lii	nux Sec	urity.							
Unit-II Linu	x – The General (Characteristic	cs				12				
The Ext2 and	d Ext3 File system	ns: General C	haracte	ristics of	, The Ext3	File system, f	ile				
permissions.	User Managemer	nt: Types of u	sers, th	e powers	of Root, 1	nanaging users	5				
(adding and	deleting): using th	e command l	line and	GUI too	ols.						

Unit-III Resource Management in Linux	12
Resource Management in Linux: file and directory management, system calls for files	
Process Management, Signals, IPC: Pipes, FIFOs, System V IPC, Message Queues,	
system calls for processes, Memory Management, library and system calls for memory.	
Unit-IV Development of Computer Graphics	12
Development of computer Graphics: Raster Scan and Random Scan graphics storages,	
displays processors and character generators, colour display techniques, interactive	
input/output devices.	
Unit-V Computer Graphics of Conic-Section	12
Points lines and curves: Scan conversion line-drawing algorithms circle and ellipse	12
concertion continues and curves. Scan conversion, inte-drawing algorithms, circle and empse	
generation, conc-section generation, polygon ming and anasing. Two-dimensional	
viewing: Coordinate systems, linear transformations, line and polygon clipping algorithms.	
References:	
1. A. Robbins, Linux Programming by Examples The Fundamentals, 2nd E	d., Pearson
Education,2008, (Textbook).	
2. K. Cox, Red Hat Linux Administrator's Guide, PHI,2009, (Textbook).	
3. R. Stevens, UNIX Network Programming, 3rd Ed., PHI,2008.	
4. S. Das, Unix Concepts and Applications, 4th Ed., TMH,2009.	
5. E. Siever, Stephen Figgins, Robert Love, Arnold Robbins, Linux in a Nutshe	ell, 6th Ed.,
O'Reilly Media,2009.	
6. N. Matthew, Richard Stones, Alan Cox, Beginning Linux Programming, 3rd Ed.,	2004.
7. D. Hearn and M.P. Baker, Computer Graphics, 2nd Ed., Prentice–Hall of India,20	004.
8. J.D. Foley, A van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics: Pri	incipals and
Practices, 2nd Ed., Addison-Wesley, MA,1990.	
9. D.F. Rogers, Procedural Elements in Computer Graphics, 2nd Ed., McGraw Company, 2001.	Hill Book
10. D.F. Rogers and A.J. Admas, Mathematical Elements in Computer Graphics McGraw Hill, 1990.	s, 2nd Ed.,

Course	Course Name: ******			Course Code: ******* GE 5106			
No: 20	GE4						
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact Hrs
2021-26	Integrated BSc-MSc						per Week: 6
	(Mathematics)		5	1	0	6	Total
							Hours: 90

SEMESTER – V

			Maximum Marks					
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks		
SBSMAT 03 05 01 C 5106	Set Theory and Metric Spaces	6	105	45	-	150		
SBSMAT 03 05 02 C 5106	Advanced Algebra	6	105	45	-	150		
DSE1		6	105	45	-	150		
DSE2		6	105	45	-	150		
	Total marks	of Semester-	V		•	600		

Course	Course Name:			Course Code: SBSMAT 03 05 01 C 5106					
No: 21	Set Theory and Metric Spaces								
Batch:	Program:	Sem: V	L	Т	Р	Credits	Cont	act Hrs per	
2021-26	Integrated						Week	k: 06	
	BSc-MSc		5	1	0	6	Tota	l Hours: 90	
	(Mathematics)								
Course	To providing the	basic knowledge	ge perta	ining to	metric sp	aces such a	as oper	and closed	
Objective	balls, neighbor	rhood, interio	r, clo	osure,	subspace,	continui	ty, c	compactness,	
	connectedness etc.								
Course	After going through this course the students will be able to								
Outcomes									
	Learn basic facts about the cardinality of a set.								
	• Understand several standard concepts of metric spaces and their properties like								
	openness, closedness, completeness, Bolzano-Weierstrass property, compactness,								
	and conne	ectedness.							
	 Identify the 	e continuity of a fu	unction	defined o	n metric sp	aces and hor	neomoi	phisms	
								Hours	
		Content o	of Each	Unit					
Unit-I: Theo	ry of Sets							18	
Finite and in	finite sets, Counta	able and uncour	ntable s	ets, Car	dinality of	sets, Schrö	öder-		
Bernstein the	orem, Cantor's th	eorem, Order re	lation i	n cardin	al number	s, Arithmet	ic of		
cardinal num	bers, Partially orde	ered set, Zorn's	lemma	and Axi	iom of cho	oice, Variou	s set		
theoretic para	doxes.								
Unit-II: Con	cepts in Metric Sj	paces						18	
Definition a	nd examples of	metric spaces	s, Ope	n sphei	res and	closed sph	eres,		
Neighbourhoo	ods, Open sets, In	nterior, exterior	and bo	undary	points, Cl	osed sets, I	Limit		
points and iso	plated points, Inter	ior and closure	of a set	, Bounda	ary of a se	t, Bounded	sets,		
Distance betw	veen two sets, Diar	neter of a set, Su	bspace	of a met	ric space.				

Unit-III: Complete Metric Spaces and Continuous Functions	18
Cauchy and Convergent sequences, Completeness of metric spaces, Cantor's intersection	
theorem, Dense sets and separable spaces, Nowhere dense sets and Baire's category	
theorem, Continuous and uniformly continuous functions, Homeomorphism, Banach	
contraction principle.	
Unit-IV: Compactness and Connectedness	18
Compact spaces, Sequential compactness, Bolzano-Weierstrass property, Compactness and	
finite intersection property, Heine-Borel theorem, Totally bounded sets, Equivalence of	
compactness and sequential compactness, Continuous functions on compact spaces.	
Separated sets, Disconnected and connected sets, Components, Connected subsets of \mathbb{R} ,	
Continuous functions on connected sets.	
Unit-V: Riemann and Improper integral	18
Riemann integral, Integrability of continuous and monotonic functions, Fundamental	
theorem of integral calculus, First mean value theorem, Bonnet and Weierstrass forms of	
second mean value theorems. Improper integrals, Dirichlet test and Abel's test for	
improper integrals.	
References:	
1. E. T. Copson (1988). Metric Spaces. Cambridge University Press, (Textbook).	
2. P. K. Jain & Khalil Ahmad (2019). Metric Spaces. Narosa, (Textbook).	
3. S. Kumaresan (2011). Topology of Metric Spaces (2nd edition). Narosa, (Textbo	ok).
4. Satish Shirali & Harikishan L. Vasudeva (2006). Metric Spaces. Springer-Verlag.	
5. Micheál O'Searcoid (2009). Metric Spaces. Springer-Verlag.	
6. G. F. Simmons (2004). Introduction to Topology and Modern Analysis. McGraw-	-Hill.
7. P. R. Halmos (1974). Naive Set Theory. Springer.	

Course	Course Name: Advanced Algebra		Course Code: SBSMAT 03 05 02 C 5106						
No: 22									
Batch:	Program:	Sem: V	L	Т	Р	Credits	Conta	act Hrs per	
2021-26	Integrated						Week	: 06	
	BSc-MSc		5	1	0	6	Total	Hours: 90	
	(Mathematics)								
Course	The objective of	the course is to	introduce	e moder	n structur	res of algebra	like gro	oup actions,	
Objective	orbits and stabilizers, rings and fields, field extensions and finite fields which are the								
	main pillars of modern algebra. The course gives the student a good mathematical maturity								
	and enables to build mathematical thinking and skill.								
C	After going through this course the students will be able to								
Course	After going through this course the students will be able to								
Outcomes	• Understand the basic concepts of group actions and their applications.								
	• Recognize and use the Sylow theorems to characterize certain finite groups.								
	• Know the fundamental concepts in ring theory such as the concepts of ideals,								
	quotient r	ings, integral do	omains, ar	nd fields	5.				
	• Learn in	detail about p	olynomia	al rings,	, fundam	ental propert	ies of	finite field	
	extension	s, and classifica	tion of fir	nite field	ls.				
								Hours	
		Content	of Each I	Unit					
Unit-I: Grou	p Actions							18	
Group action	ns, Orbits and s	tabilizers, Con	jugacy d	classes,	Orbit-sta	abilizer theor	em,		
Normalizer o	f an element of a	group, Center o	f a group	, Class	equation	of a group, Ir	nner		
and outer auto	omorphisms of a g	roup.							
Unit-II: Sylo	w Theorems							18	
Cauchy's the	orem for finite at	elian groups, I	Finite sin	nple gro	oups, Syle	ow theorems	and		
applications i	ncluding nonsimpl	icity tests.							
**	– 1	-							

Unit-III: Rings and Fields	18
Definition, examples and elementary properties of rings, Commutative rings, Integral	
domain, Division rings and fields, Characteristic of a ring, Ring homomorphisms and	
isomorphisms, Ideals and quotient rings. Prime, principal and maximal ideals, Relation	
between integral domain and field, Euclidean rings and their properties, Wilson and	
Fermat's theorems.	
Unit-IV: Polynomial Rings	18
Polynomial rings over commutative ring and their basic properties, The division algorithm;	
Polynomial rings over rational field, Gauss lemma and Eisenstein's criterion, Euclidean	
domain, principal ideal domain, and unique factorization domain.	
Unit-V: Field Extensions and Finite Fields	18
Extension of a field, Algebraic element of a field, Algebraic and transcendental numbers,	
Perfect field, Classification of finite fields.	
References:	
1. David S. Dummit & Richard M. Foote (2008). Abstract Algebra (2nd edit	ion). Wiley,
(Textbook).	
2. P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul (2003). Basic Abstract Algebra (2nd edition).
Cambridge University Press, (Textbook).	
3. Michael Artin (2014). Algebra (2nd edition). Pearson.	
4. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th edition). Pearson	n.
5. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage	•
6. N. S. Gopalakrishnan (1986). University Algebra, New Age International Publish	ers.
7. I. N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India.	
8. Thomas W. Hungerford (2004). Algebra (8th edition). Springer.	
9. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications.	
10. Serge Lang (2002). Algebra (3rd edition). Springer-Verlag.	
11. I. S. Luthar & I. B. S. Passi (2013). Algebra: Volume 1: Groups. Narosa.	
12. I. S. Luthar & I. B. S. Passi (2012). Algebra: Volume 2: Rings. Narosa.	

Course	Course Name: Tensors and Differential Course Code: SBSMAT 03 05 0						3 05 01 I	OSE 5106
No: 23	Geometry							
Batch:	Program:	Sem: V	L	Т	Р	Credits	Conta	ct Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	In this course, st	udents will be in	nparted k	nowledg	ge to en	able them to	underst	and several
Objective	concepts of Differential Geometry such as space curves, surfaces, curvatures, torsion,							
	developable and	geodesics.						
Course	After going through this course the students will be able to							
Outcomes								
	• Explain the basic concepts of tensors.							
	• Understand role of tensors in differential geometry.							
	• Learn various properties of curves including Frenet-Serret formulae and their							
	applications.							
	• Know the Interpretation of the curvature tensor, Geodesic curvature, Gauss and Weingarten formulae.							
	• Understar	d the role of Ga	uss's The	orem a E	Igregiun	n and its cons	sequence	28.
	L							Hours
		Content	of Each 1	Unit				
Unit-I: Tens	ors							18
Contravariant	and covariant vec	tors, Transforma	ation form	nulae, Te	ensor pro	oduct of two	vector	
spaces, Tenso	or of type (r, s) ,	Symmetric and	skew-syr	nmetric	propert	ies, Contract	tion of	
tensors, Quot	ient law, Inner pro	duct of vectors.						
Unit-II: Furt	ther Properties of	Tensors						18
Fundamental	tensors, Associat	ed covariant and	d contrav	variant v	ectors.	Inclination	of two	
vectors and o	orthogonal vectors	. Christoffel svn	nbols. La	w of tra	nsforma	ation of Chri	istoffel	
symbols. Cov	ariant derivatives	of covariant and	contravar	iant vect	tors, Co	variant differ	rentiat-	
ion of tensors	, Curvature tensor	Ricci tensor. Cu	irvature te	ensor ide	ntities.			
	,							

Unit-III: Curves in \mathbb{R}^2 and \mathbb{R}^3	18
Basic definitions and examples, Arc length, Curvature and the Frenet-Serret formulae,	
Fundamental existence and uniqueness theorem for curves, Non-unit speed curves.	
Unit-IV: Surfaces in R ³	18
Basic definitions and examples, The first fundamental form, Arc length of curves on	
surfaces, Normal curvature, Geodesic curvature, Gauss and Weingarten formulae,	
Geodesics, Parallel vector fields along a curve and parallelism.	
Unit-V: Geometry of Surfaces	18
The second fundamental form and the Weingarten map; Principal, Gauss and mean	
curvatures; Isometries of surfaces, Gauss's Theorem Egregium, The fundamental theorem of	
surfaces, Surfaces of constant Gauss curvature, Exponential map, Gauss lemma, Geodesic	
coordinates, The Gauss-Bonnet formula and theorem.	
References:	
1. Alferd Gray (2018). Modern Differential Geometry of Curves and Surfaces with M	lathematica
(4th edition). Chapman & Hall/CRC Press, Taylor & Francis, (Textbook).	
2. A. Pressley (). Elementary Differential Geometry. 2 nd edition, Springer, (Textbook)).
3. Christian Bär (2010). Elementary Differential Geometry. Cambridge University Pre-	ess.
4. Manfredo P. do Carmo (2016). Differential Geometry of Curves & Surfaces (R	evised and
updated 2nd edition). Dover Publications.	
5. Richard S. Millman & George D. Parkar (1977). Elements of Differential Geometry	y. Prentice-
Hall.	
6. R. S. Mishra (1965). A Course in Tensors with Applications to Riemannian	Geometry.
Pothishala Pvt. Ltd.	
7. Sebastián Montiel & Antonio Ross (2009). Curves and Surfaces. American Ma	athematical
Society.	

Course	Course Name: Mathematical Logic		Course Code: SBSMAT 03 05 02 DSE 5106					
No: 24								
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	t Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc							
	(Mathematics)		5	1	0	6	Total	Hours: 90
Course	The objective of	the course is	e course is to introduce basic structures of language, propositional logic,					
Objective	completeness the	orem and In	terpretation	n in a th	eory. Th	e course give	es the stu	ident a good
	mathematical ma	turity and en	ables to bu	ild math	ematical	thinking and	skill.	
Course	After going	g through thi	s course th	ne studer	nts will	be able to		
Outcomes	• Learn the syntax of first-order logic and semantics of first-order languages.							
	• Understand the propositional logic and basic theorems like compactness theorem, meta theorem and post-tautology theorem.							
	• Assimilate the concept of completeness interpretations and their applications with special emphasis on applications in algebra.							
								Hours
		Conte	ent of Eacl	n Unit				
Unit-I: Synta	ax of First-order l	Logic						18
First-order la	nguages, Terms of	language, Fo	ormulas of	language	e, First o	rder theory.		
Unit-II: Sem	antics of First-or	der Languag	ges					18
Structures of	first order langua	ges, Truth ir	n a structu	re, Mode	el of a t	heory, Embed	ddings	
and isomorph	ism.							
Unit-III: Pro	positional Logics							18
Syntax of pro	positional logic, S	Semantics of	propositio	nal logic	, Compa	actness theore	em for	
propositional	logic, Proof in pro	positional lo	ogic, Meta	theorem	in propo	ositional logic	c, Post	
tautology the	orem.							
1								

Unit-IV: Proof and Meta Theorems in First-order Logic	18
Proof in first-order logic, Meta theorems in first-order logic, Some meta theorem in	
arithmetic, Consistency and completeness.	
Unit-V: Completeness Theorem and Model Theory	18
Completeness theorem, Interpretation in a theory, Extension by definitions, Compactness	
theorem and applications, Complete theories, Applications in algebra.	

References:

- 1. Elliott Mendelson (2015). Introduction to Mathematical Logic (6th edition). Chapman & Hall/CRC, (Textbook).
- Shashi Mohan Srivastava (2013). A Course on Mathematical Logic (2nd edition). Springer, (Textbook).
- 3. Richard E. Hodel (2013). An Introduction to Mathematical Logic. Dover Publications.
- Yu I. Manin (2010). A Course in Mathematical Logic for Mathematicians (2nd edition). Springer.

Course	Course Name: Integral Transforms and C			Cou	Course Code: SBSMAT 03 05 03 DSE 5106			
No: 25	Fourier Analysis							
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	et Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	The course is air	ned at expos	ing the stu	idents to	learn th	ne Laplace tra	ansforms	and Fourier
Objective	transforms. To	equip with	the meth	ods of	finding	Laplace trai	nsform	and Fourier
	Transforms of d	ifferent func	tions. To	make th	em fami	iliar with the	method	ls of solving
	differential equations, partial differential equations, IVP and BVP using Laplace transforms							
	and Fourier transforms.							
			.1					
Course	After going through this course the students will be able to							
Outcomes	• Know about piecewise continuous functions, Dirac delta function, Laplace transforms and its properties.							
	• Solve ord	inary differen	ntial equati	ons usin	g Laplac	e transforms.		
	 Familiarise with Fourier transforms of functions belonging to L¹(ℝ) class, relation between Laplace and Fourier transforms. 							
	• Explain Parseval's identity, Plancherel's theorem and applications of Fourier transforms to boundary value problems.							
	• Learn Fou integration	urier series, E n of Fourier s	Bessel's ine series.	equality,	term by	term different	tiation a	nd
	• Apply the	concepts of	the course	in real li	ife probl	ems.		
								Hours
		Conte	ent of Eacl	n Unit				
Unit-I: Lapla	ace Transforms							18
Laplace trans	sform, Linearity, I	Existence the	eorem, Lap	place tra	nsforms	of derivative	es and	
integrals, Shi	ifting theorems, C	change of sc	ale proper	ty, Lapl	ace tran	sforms of pe	eriodic	
functions, Di	rac's delta function	1.						

Unit-II: Further Properties of Laplace Transforms and Applications	18
Differentiation and integration of transforms, Convolution theorem, Integral equations,	
Inverse Laplace transform, Lerch's theorem, Linearity property of inverse Laplace	
transform, Translations theorems of inverse Laplace transform, Inverse transform of	
derivatives, Applications of Laplace transform in obtaining solutions of ordinary	
differential equations and integral equations.	
Unit-III: Fourier Transforms	18
Fourier and inverse Fourier transforms, Fourier sine and cosine transforms, Inverse Fourier	
sine and cosine transforms, Linearity property, Change of scale property, Shifting property,	
Modulation theorem, Relation between Fourier and Laplace transforms.	
Unit-IV: Solution of Equations by Fourier Transforms	18
Solution of integral equation by Fourier sine and cosine transforms, Convolution theorem	
for Fourier transform, Parseval's identity for Fourier transform, Plancherel's theorem,	
Fourier transform of derivatives, Applications of infinite Fourier transforms to boundary	
value problems, Finite Fourier transform, Inversion formula for finite Fourier transforms.	
Unit-V: Fourier Series	18
Fourier cosine and sine series, Fourier series, Differentiation and integration of Fourier	
series, Absolute and uniform convergence of Fourier series, Bessel's inequality, The	
complex form of Fourier series.	
References:	
1. James Ward Brown & Ruel V. Churchill (2011). Fourier Series and Bou	ndary Value
Problems. McGraw-Hill Education, (Textbook).	
2. Walter Rudin (2017). Fourier Analysis on Groups. Dover Publications, (Textboo	k).
3. Charles K. Chui (1992). An Introduction to Wavelets. Academic Press.	
4. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wile	<i>у</i> ,.
5. A. Zygmund (2002). Trigonometric Series (3rd edition). Cambridge University Pr	cess.

No: 26Sem: VLTPCreditsContact Hrs pBatch:Program:Sem: VLTPCreditsContact Hrs p2021-26IntegratedIntegratedVVVVBSc-MSc5106Total Hours:	r								
Batch: 2021-26Program: Integrated BSc-MScSem: VLTPCreditsContact Hrs p5106Total Hours:	r								
2021-26 Integrated Week: 06 BSc-MSc 5 1 0 6 Total Hours:									
BSc-MSc 5 1 0 6 Total Hours:									
	90								
(Mathematics)									
Course This course develops the ideas underlying the Simplex Method for Linear Program	ning								
Objective Problem, as an important branch of Operations Research. The course covers L	near								
Programming with applications to Transportation, Assignment and Game Problem.	Programming with applications to Transportation, Assignment and Game Problem. Such								
problems arise in manufacturing resource planning and financial sectors.	problems arise in manufacturing resource planning and financial sectors.								
Course After going through this course the students will be able to	After going through this course the students will be able to								
Outcomes									
• Analyze and solve linear programming models of real life situations.	• Analyze and solve linear programming models of real life situations.								
• Provide graphical solutions of linear programming problems with two variables	• Provide graphical solutions of linear programming problems with two variables,								
and illustrate the concept of convex set and extreme points.	and illustrate the concept of convex set and extreme points.								
• Understand the theory of the simplex method.	• Understand the theory of the simplex method.								
• Know about the relationships between the primal and dual problems, and to understand sensitivity analysis.	• Know about the relationships between the primal and dual problems, and to understand sensitivity analysis.								
• Learn about the applications to transportation, assignment and two-person zero- game problems.	sum								
Hou	S								
Content of Each Unit									
Unit-I: Linear Programming Problem, Convexity and Basic Feasible Solutions 18									
Formulation, Canonical and standard forms, Graphical method; Convex and polyhedral									
sets, Hyperplanes, Extreme points; Basic solutions, Basic Feasible Solutions, Reduction of									
feasible solution to basic feasible solution, Correspondence between basic feasible									
solutions and extreme points.									
Unit-II: Simplex Method 18									
Optimality criterion, Improving a basic feasible solution, Unboundedness, Unique and									
alternate optimal solutions; Simplex algorithm and its tableau format; Artificial variables,									
Two-phase method Big-M method									
Unit-III: Duality	18								
--	--------------								
Formulation of the dual problem, Duality theorems, Complimentary slackness theorem,									
Economic interpretation of the dual, Dual-simplex method.									
Unit-IV: Sensitivity Analysis	18								
Changes in the cost vector, right-hand side vector and the constraint matrix of the linear									
programming problem.									
Unit-V: Applications	18								
Transportation Problem: Definition and formulation, Methods of finding initial basic									
feasible solutions: Northwest-corner rule, Least- cost method, Vogel approximation									
method; Algorithm for obtaining optimal solution. Assignment Problem: Mathematical									
formulation and Hungarian method.Game Theory: Formulation and solution of two-person									
zero-sum games, Games with mixed strategies, Linear programming method for solving a									
game.									
References:									
1. G. Hadley (2002). Linear Programming. Narosa Publishing House, (Textbook).									
2. Hamdy A. Taha (2017). Operations Research: An Introduction (10th editio	n). Pearson,								
(Textbook).									
3. Frederick S. Hillier & Gerald J. Lieberman (2015). Introduction to Operation	s Research								
(10th edition). McGraw-Hill Education.									
4. Mokhtar S. Bazaraa, John J. Jarvis & Hanif D. Sherali (2010). Linear Progra	amming and								
Network Flows (4th edition). John Wiley & Sons.									
5. Paul R. Thie & Gerard E. Keough (2014). An Introduction to Linear Programmin	ng and Game								
Theory (3rd edition). Wiley India Pvt. Ltd.									

Course	Course Name:			Cour	Course Code: SBSMAT 03 05 05 DSE 5106			
No: 27	Information and Coding Theory							
Batch:	Program:	Sem: V	L	Т	Р	Credits	Conta	ct Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Tota	Hours: 90
	(Mathematics)							
Course	The Mathematics	program pr	omotes ma	thematio	cal skills	and knowled	dge for t	their intrinsic
Objective	beauty, effectiveness in developing proficiency in analytical reasoning, and utility in							
	modeling and solving real world problems. Students who have learned to logically question							
	assertions, recognize patterns, and distinguish the essential and irrelevant aspects of							
	problems can think deeply and precisely, nurture the products of their imagination to							
	fruition in reality	, and share t	heir ideas	and insig	ghts whi	le seeking an	d benefi	ting from the
	knowledge and insights of others.							
Course	After going through this course the students will be able to							
Outcomes	• Study sim	nla idaal stat	istical con	municat	ion mod	alc		
	• Study shin	ipie ideal stat	listical con	munica				
	Understar	nd the develo	pment of c	odes for	transmi	ssion and dete	ection of	information.
	• Learn abo	out the input a	and output	of a sigr	nal via tr	ansmission cl	nannel.	
	• Study det	ection and co	prrection of	errors d	uring tra	ansmission.		
	Represent	a linear cod	e by matric	ces - enc	oding an	d decoding.		
								Hours
		Conte	ent of Eacl	n Unit				
Unit-I: Conc	epts of Information	on Theory						18
Communicati	- ion processes, A m	rodel of com	municatio	n system	, A quai	ntitative meas	sure of	
information,	Binary unit of info	rmation, A m	neasure of	uncertair	nty, H fu	nction as a m	easure	
of uncertaint	y, Sources and bir	ary sources,	Measure	of infori	nation f	or two-dimer	sional	
discrete finite	e probability schem	les.						
	_							
Unit-II: Ent	ropy Function							18

A sketch of communication network, Entropy, Basic relationship among different entropies, A measure of mutual information, Interpretation of Shannon's fundamental

inequalities; Redundancy, efficiency, and channel capacity; Binary symmetric channel,	
Binary erasure channel, Uniqueness of the entropy function, Joint entropy and conditional	
entropy, Relative entropy and mutual information, Chain rules for entropy, Conditional	
relative entropy and conditional mutual information, Jensen's inequality and its	
characterizations, The log sum inequality and its applications.	
Unit-III: Concepts of Coding	18
Block codes, Hamming distance, Maximum likelihood decoding, Levels of error handling,	
Error correction, Error detection, Erasure correction, Construction of finite fields, Linear	
codes, Matrix representation of linear codes, Hamming codes.	
	10
Unit-IV: Bounds of Codes	18
Orthogonality relation, Encoding and decoding of linear codes, The singleton bound and	
maximum distance separable codes, The sphere-packing bound and perfect codes, The	
Gilbert-Varshamov bound, MacWilliams' identities.	
Unit-V: Cyclic Codes	18
Definition and examples of cyclic codes. Generator polynomial and check polynomial	10
Definition and examples of eyene codes, Generator porynomial and eneck porynomial,	
Generator matrix and check matrix, Bose-Chaudhuri-Hocquenghem (BCH) code as a	
cyclic code.	
References:	
1. Robert B. Ash, (2014). Information Theory. Dover Publications, (Textbook).	
2. Thomas M. Cover & Joy A. Thomas (2013). Elements of Information Theory (2nd edition).
Wiley India Pvt. Ltd, (Textbook).	
3. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition), Cengage	
4. Fazlollah M. Reza, (2003). An Introduction to Information Theory. Dover Publica	ations.
5. Ron M. Roth (2007). Introduction to Coding Theory. Cambridge University Press	5.

 Claude E. Shannon & Warren Weaver (1969). The Mathematical Theory of Communication. The University of Illinios Press.

Course	Course Name: Graph Theory			Cou	Course Code: SBSMAT 03 05 06 DSE 5106				
No: 28									
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contact	Hrs per	
2021-26	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Total	Hours: 90	
	(Mathematics)								
Course	The objective of	The objective of the course is to introduce students with the fundamental con							
Objective	theory, with a s	ense of som	e its mod	ern appl	ications	. They will	be able t	o use these	
	methods in subs	equent cours	ses in the	design a	and anal	ysis of algo	rithms, co	omputability	
	theory, software	engineering,	and compu	iter syste	ems.				
Course	After going through this course the students will be able to								
Outcomes	• Appreciate the definition and basics of graphs along with types and their examples								
	represente de definition and custes of graphs along what types and then enampresi								
	• Understar	nd the definit	ion of a tre	e and lea	arn its ap	oplications to	fundamer	ntal circuits.	
	• Know the applications of graph theory to network flows.								
	• Understand the notion of planarity and coloring of a graph.								
	• Relate the	e graph theor	y to the rea	al-world	problem	s.			
		Conte	ent of Eacl	n Unit				Hours	
Unit-I: Paths	s, Circuits and Gr	aph Isomor	phisms					18	
Definition ar	nd examples of a	graph, Subg	graph, Wa	lks, Patl	hs and	circuits; Cor	nected		
graphs, disco	nnected graphs an	d componen	ts of a gra	aph; Eule	er and H	Iamiltonian g	graphs,		
Graph isomo	rphisms, Adjacenc	y matrix and	l incidence	matrix	of a graj	ph, Directed	graphs		
and their elen	nentary properties.								
Unit-II: Tree	es and Fundamen	tal Circuits						18	
Definition an	d properties of tree	es, Rooted an	d binary tr	ees, Cay	ley's the	orem on a co	ounting		
tree, Spannin	g tree, Fundamenta	al circuits, M	inimal spa	nning tre	es in a c	onnected gra	ph.		
Unit-III: Cu	t-Sets and Cut-Ve	ertices						18	
Cut-set of a	graph and its pr	operties. Fur	ndamental	circuits	and cut	t-sets. Cut-v	ertices.		
Connectivity	and separability. N	letwork flow	s. 1- isomo	orphism a	and 2- is	omorphism.	,		
	Connectivity and separability, Network nows, 1- isomorphism and 2- isomorphism.								

Unit-IV: Planar Graphs	18
Planar graph, Euler theorem for a planar graph, Various representations of a planar graph,	
Dual of a planar graph, Detection of planarity, Kuratowski's theorem.	
Unit-V: Graph Coloring	18
Chromatic number of a graph, Chromatic partition, Chromatic polynomial, Matching and	
coverings, Four color problem.	
References:	
1. R. Balakrishnan & K. Ranganathan (2012). A Textbook of Graph Theorem	ry. Springer,
(Textbook).	
2. Edgar G. Goodaire & Michael M. Parmenter (2018). Discrete Mathematics	with Graph
Theory (3rd edition). Pearson, (Textbook).	
3. Narsingh Deo (2016). Graph Theory with Applications to Engineering an	d Computer
Science. Dover Publications.	
4. Reinhard Diestel (2017). Graph Theory (5th edition). Springer.	

5. Douglas West (2017). Introduction to Graph Theory (2nd edition). Pearson.

Course	Course Name:			Course Code: SBSMAT 03 05 07 DSE 5106				
No: 29	Special Theory of Relativity							
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	t Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	The course provi	des a compre	hensive ir	troductio	on to the	general theo	ory of rela	ativity where
Objective	all forms of grav	ity can be de	escribed a	s a purel	y geome	etric effect w	here the	curvature of
	space and time f	ollows the d	istribution	of energ	gy and t	he amount n	nomentui	n the matter
	has. An overview is given of the classical tests of theory, and how the theory is used to							
	describe black ho	oles, gravitati	ional wave	es, and th	ne cosmo	ological evolu	ution of	the universe.
	The course also p	provides an in	ntroduction	n to diffe	erential g	geometry, wh	ich is neo	cessary to be
	able to both formulate and apply the theory.							
Course	After going through this course the students will be able to							
Outcomes		,						
outcomes	• Understar	d the basic e	lements of	f Newton	ian mecl	hanics includ	ing Mich	elson-
	equations	aperiment and	d geometri	ical interj	pretation	s of Lorentz	transform	lation
		. 1 . 1	, . . ,	• •••	• • •	r , ,		
	• Learn abo	ut length cor	itraction, t	ime dilat	ion and	Lorentz contr	raction fa	ctor.
	• Study 4-d	imensional N	1inkowski	an space	-time and	d its conseque	ences.	
	• Understar	d equations	of motion	as a part	of relativ	vistic mechar	nics.	
	• Imbibe co	nnections be	tween rela	tivistic n	nechanic	s and electro	magnetis	m.
							8	TT
		Conto	nt of Fool	L T⊺\$4				Hours
TT . •4 T. NT. 4		Conte	nt of Each	n Unit				10
Unit-1: Newt	Contan Mechanics	and Call!	on malat!-		halase N	lonloss are -	imart	18
Lorentz Et-	es, speed of light	unothesis D	call relative	aroctor	f space of	and time. Dec	ment,	
of special 4	contraction I	Typoulesis, K	cialive ch	ion corr	i space a	nd its coor	outrice1	
intorprototion	Group proportion	of Lorentz to	anstormat	ions	ations a	nu its geom	iculcal	
interpretation	, Group properties	or Lorentz tr	ansiormat	ions.				

Unit-II: Relativistic Kinematics

18

Composition of parallel velocities, Length contraction, Time dilation, Transformation						
equations for components of velocity and acceleration of a particle and Lorentz contraction						
factor.						
Unit-III: Geometrical representation of space-time	18					
Four dimensional Minkowskian space-time of special relativity, Time-like, light-like and space-like intervals, Null cone, Proper time, World line of a particle, Four vectors and tensors in Minkowiskian space-time.						
Unit-IV: Relativistic Mechanics	18					
Variation of mass with velocity. Equivalence of mass and energy. Transformation						
equations for mass momentum and energy. Energy-momentum four vector. Relativistic						
force and Transformation equations for its components. Relativistic equations of motion of						
a particle.						
Unit-V: Electromagnetism	18					
Transformation equations for the densities of electric charge and current. Transformation						
equations for electric and magnetic field strengths. The Field of a Uniformly Moving Point						
charge. Forces and fields near a current carrying wire. Forces between moving charges.						
The invariance of Maxwell's equations.						
References:	I					
1. James L. Anderson (1973). Principles of Relativity Physics. Academic Press, (Te	extbook).					
2. Robert Resnick (2007). Introduction to Special Relativity. Wiley, (Textbook).						
3. Peter Gabriel Bergmann (1976). Introduction to the Theory of Relativity. Dover	Publications.					
4. C. Moller (1972). The Theory of Relativity (2nd edition). Oxford University Pres	SS.					
5. Wolfgang Rindler (1977). Essential Relativity: Special, General, and Cosmologie	cal. Springer-					
Verlag.						
6. V. A. Ugarov (1979). Special Theory of Relativity. Mir Publishers, Moscow.						

Course No:	Course Name: Analytical Geometry					Course Code: SBSMAT 03 05 08			
30					DSE 5106				
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact		
							Hrs per		
	Integrated						Week: 06		
2021-2026	B.ScM.Sc.	V							
	(Mathematics)		5	1	0	6	Total		
							Hours: 90		
Course	The course provi	des a compre	hensive intro	duction to	the gener	ral theory of ge	ometry where		
Objective	all forms of coni	cs can be des	scribed as a p	urely geor	netric eff	ect. An overvie	ew of syllabus		
	is the basic know	ledge and to	finds basic i	deas the ta	angent an	d normal at an	y point, chord		
	of contact and poles of line for a conic. Particular emphasis has been laid on sphere cone								
	and cylinder.								
Course	After going through this course the students will be able to								
Outcomes:	• Derive system of conics, confered conics and relar equation of a conic								
	• Derive system of conics, confocal conics and polar equation of a conic.								
	• Determine for a coni	e the tangent c.	and normal a	t any poin	t, chord o	f contact and p	oles of line		
	• Understar	nd the concep	ot of sphere, c	one and cy	ylinder.				
	• Obtain the equations of tangent plane, director sphere, normal to the conicoids and enveloping.								
	Describe conicoid	circular section	on, plane sect is of second d	ions of co egree equa	nicoids, g ations.	enerating lines	, confocal		
	1						Hours of		
		Conte	nt of Each U	nit			Each Unit		
Unit-I: The l	Plane						18		
System of C	o-ordinates, Direc	tion Cosines	and Projecti	on, Plane,	Normal	and Intercept			
form of the Projection of	equation of the j a plane, area of a t	plane, Equati riangle whos	ion of some e co-ordinate	particular s in plane.	plane, p	pair of plane,			
Unit-II: Con	ics Sections						18		
General equa	tion of second deg	gree. Tracing	of conics. T	angent at	any point	to the conic,			

chord of contact, pole of line to the conic, director circle of conic. System of conics.	
Confocal conics. Polar equation of a conic, tangent and normal to the conic.	
Unit-III: Sphere, Cones and Cylinder	18
Sphere: Plane section of a sphere. Sphere through a given circle. Intersection of two	
spheres, radical plane of two spheres. Co-axal system of spheres.Cones. Right circular	
cone, enveloping cone and reciprocal cone. Cylinder: Right circular cylinder and	
enveloping cylinder.	
Unit-IV: The conicoids	18
Central Conicoids: Equation of tangent plane. Director sphere. Normal to the conicoids.	
Polar plane of a point. Enveloping cone of a coincoid. Enveloping cylinder of a coincoid.	
Unit-V: Generalized conicoids	18
Paraboloids: Circular section, Plane sections of conicoids. Generating lines. Reduction of	
second degree equations.	
References:	

- R.J.T. Bill, Elementary Treatise on Coordinary Geometry of Three Dimensions, MacMillan India Ltd. 2018, (Textbook).
- P.K. Jain and Khalil Ahmad, A Textbook of Analytical Geometry of Three Dimensions, Wiley Eastern Ltd. 2009, (Textbook).
- 3. Shantinarayan, Analytic Solid Geometry, 2020.
- 4. C. A. Hart and D. D. Feldman, Plane and Solid Geometry, 2019.
- 5. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 6. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) Pvt. Ltd.2002.
- 7. S.L. Loney, The Elements of Coordinate Geometry, McMillan and Company, London.

SEMESTER – VI

				Maximum Ma			
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks	
SBSMAT 03 06 01 C 5106	Complex Analysis	6	105	45	-	150	
SBSMAT 03 06 02 C 4046	Numerical Analysis	4	70	30	-	100	
SBSMAT 03 06 02 C 4046	Numerical Analysis (Lab)	4			50	50	
DSE3		6	105	45	-	150	
DSE4		6	105	45	-	150	
	Total marks	of Semester-'	VI			600	

CourseCourse Name: Complex AnalysisCourse Code	Course Code: SBSMAT 03 06 01 C 5106									
No: 31										
Batch:Program:Sem: VILTP	Credits	Contact I	Hrs per							
2021-26 Integrated		Week:	06							
BSc-MSc 5 1 0	6	Total H	ours: 90							
(Mathematics)										
Course To providing the basic knowledge and to finds basic	ideas of a	nalysis for	r complex							
Objective functions in complex variables with visualization through	functions in complex variables with visualization through relevant practical's. Particular									
emphasis has been laid on Cauchy's theorems and series ex	emphasis has been laid on Cauchy's theorems and series expansions.									
Course After going through this course the students will be	After going through this course the students will be able to									
Outcomer	After going through this course the students will be able to									
• Visualize complex numbers as points of \mathbb{R}^2 a	• Visualize complex numbers as points of \mathbb{R}^2 and stereographic projection of									
complex plane on the Riemann sphere.	complex plane on the Riemann sphere.									
• Understand the significance of differentiability and	• Understand the significance of differentiability and analyticity of complex functions									
leading to the Cauchy-Riemann equations.	leading to the Cauchy-Riemann equations.									
• Learn the role of Cauchy-Goursat theorem an	• Learn the role of Cauchy-Goursat theorem and Cauchy integral formula in									
evaluation of contour integrals.										
• Apply Liouville's theorem in fundamental theorem	of algebra.									
• Understand the convergence, term by term integrower series.	gration and	differentia	ation of a							
Content of Each Unit			Hours							
Unit-I: Complex Plane and functions.			18							
Complex numbers and their representation, algebra of complex numbers	s; Complex	plane,								
Open set, Domain and region in complex plane; Stereographic project	ion and Rie	emann								
sphere; Complex functions and their limits including limit at infinity; C	Continuity, I	Linear								
fractional transformations and their geometrical properties.										
			10							
Unit-II: Analytic Functions and Cauchy-Riemann Equations			18							
Differentiability of a complex valued function, Cauchy-Riemann equ	lity of a complex valued function, Cauchy-Riemann equations, Harmonic									
	cessary and sufficient conditions for differentiability, Analytic functions;									
functions, necessary and sufficient conditions for differentiability, A	nalytic func	ctions;								
functions, necessary and sufficient conditions for differentiability, Analyticity and zeros of exponential, trigonometric and logarithmic functions.	nalytic func	etions; ch cut								

Line integral, Path independence, Complex integration, Green's theorem, Anti-derivative	
theorem, Cauchy-Goursat theorem, Cauchy integral formula, Cauchy's inequality,	
Derivative of analytic function, Liouville's theorem, Fundamental theorem of algebra,	
Maximum modulus theorem and its consequences.	
Unit-IV: Power Series18	
Sequences, series and their convergence, Taylor series and Laurent series of analytic	
functions, Power series, Radius of convergence, Integration and differentiation of power	
series, Absolute and uniform convergence of power series.	
Unit-V: Singularities and Contour Integration18	
Meromorphic functions, Zeros and poles of meromorphic functions, Nature of	
singularities, Picard's theorem, Residues, Cauchy's residue theorem, Argument principle,	
Rouche's theor- em, Jordan's lemma, Evaluation of proper and improper integrals.	
References:	
1. James Ward Brown & Ruel V. Churchill (2009). Complex Variables and Applications	
(9th edition). McGraw-Hill Education, (Textbook).	
2. John B. Conway (1973). Functions of One Complex Variable. Springer-Verlag, (Textbook)).
3. Lars V. Ahlfors (2017). Complex Analysis (3rd edition). McGraw-Hill Education.	
4. Joseph Bak & Donald J. Newman (2010). Complex Analysis (3rd edition). Springer.	
5. E.T. Copson (1970). Introduction to Theory of Functions of Complex Variable. Oxfo	ord
University Press.	
6. Theodore W. Gamelin (2001). Complex Analysis. Springer-Verlag.	
7. George Polya & Gordon Latta (1974). Complex Variables. Wiley.	
8. H. A. Priestley (2003). Introduction to Complex Analysis. Oxford University Press.	
9. E. C. Titchmarsh (1976). Theory of Functions (2nd edition). Oxford University Press.	

Course	Course Name: Numerical Analysis				Course Code: SBSMAT 03 06 02 C 4046			
No: 32								
Batch:	Program:	Sem:VI	L	Т	Р	Credits	Contact	Hrs per
2021-26	Integrated						Week:	08
	BSc-MSc		4	0	4	6	Total H	Hours: 120
	(Mathematics)							
Course	The rapid grow	th of scie	ence and	technol	ogy durin	g last few d	lecades h	as made a
Objective	tremendous change in the nature of various mathematical problems. It is very difficult and							
	almost impossible to get analytical solutions in case of many of these problems. These							
	shortcomings of analytical solutions lead us to various numerical techniques developed for							
	different types of	of mathema	atical pr	oblems s	eem to be	e an excellent	t option.	The course
	objective is to acquaint the students with a wide range of numerical methods to solve							
	algebraic and trai	nscendenta	l equatio	ons, linear	system of	equations, in	terpolatio	n and curve
	fitting problems,	numerical	integration	on, initial	and bound	lary value prol	blems, etc	
<u> </u>					1	1 11 .		
Course	After going	g through t	his cour	se the stu	dents will	be able to		
Outcomes	• Obtain nu	merical sol	lutions o	f algebrai	c and trans	scendental equ	ations.	
	• Find num the solution	erical solut	ions of s	ystem of	linear equa	ations and chee	ck the acc	suracy of
	• Learn abo	out various	interpola	ating and	extrapolati	ng methods.		
	• Solve init methods.	ial and bou	ndary va	llue probl	ems in diff	ferential equation	ions using	g numerical
	Apply var	ious nume	rical met	hods in re	eal life pro	blems.		
		Con	tent of I	Each Uni	t			Hours
Unit-I: Num	erical Methods fo	r Solving A	Algebrai	c and Tr	anscender	ntal Equation	s	24
Round-off er	ror and computer	arithmetic,	Local a	nd global	truncation	n errors, Algo	rithms	
and converge	ence; Bisection me	thod, False	e position	n method	, Fixed poi	int iteration m	ethod,	
Newton's met	thod and secant me	thod for so	olving eq	uations.				
Unit-II: Nun	nerical Methods fo	or Solving	Linear	Systems				24
Partial and so	caled partial pivot	ing, Lower	and up	- per triang	gular (LU)	decompositio	n of a	

matrix and its applications, Thomas method for tridiagonal systems; Gauss-Jacobi, Gauss-					
Seidel and successive over-relaxation (SOR) methods.					
Unit-III: Interpolation	24				
Lagrange and Newton interpolations, Piecewise linear interpolation, Cubic spline					
interpolation, Finite difference operators, Gregory-Newton forward and backward					
difference interpolations.					
Unit-IV: Numerical Differentiation and Integration	24				
First order and higher order approximation for first derivative, Approximation for second					
derivative; Numerical integration: Trapezoidal rule, Simpson's rules and error analysis,					
Bulirsch-Stoer extrapolation methods, Richardson extrapolation.					
Unit-V: Initial and Boundary Value Problems of Differential Equations	24				
Euler's method, Runge-Kutta methods, Higher order one step method, Multi-step methods;					
Finite difference method, Shooting method, Real life examples: Google search engine, 1D					
simulations, Weather forecasting.					

References:

- R. K. Gupta, Numerical methods: Fundamental and Applications, 1st Edition, Cambridge University Press, (Textbook).
- 2. M. K. Jain, S. R. K. Iyengar & R. K. Jain (2012). Numerical Methods for Scientific and Engineering Computation (6th edition). New Age International Publishers, (Textbook).
- 3. Brian Bradie (2006), A Friendly Introduction to Numerical Analysis. Pearson.
- 4. C. F. Gerald & P. O. Wheatley (2008). Applied Numerical Analysis (7th edition), Pearson Education, India.
- 5. F. B. Hildebrand (2013). Introduction to Numerical Analysis: (2nd edition). Dover Publications.
- Robert J. Schilling & Sandra L. Harris (1999). Applied Numerical Methods for Engineers Using MATLAB and C. Thomson-Brooks/Cole.

Course	Course Name: Discrete Mathematics			Cou	Course Code: SBSMAT 03 06 01 DSE 5106			
No: 33								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Conta	ct Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Tota	Hours: 90
	(Mathematics)							
Course	This course will	discuss fun	damental	concepts	and to	ols in discret	te math	ematics with
Objective	emphasis on the	ir applicatio	ns to com	puter sc	ience. 7	Copics include	e logic	and Boolean
	circuits, sets, fur	nctions, rela	tions, dete	rministic	algorit	hms and ran	domized	d algorithms,
	analysis techniqu	es based on o	counting m	ethods a	nd recur	rence relation	is, trees	and graphs.
C	A <i>E</i> (<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>					1		
Course	Alter going	g through thi	s course u	he stude	nts will	be able to		
Outcomes	• Learn abo	out partially o	ordered sets	s, lattices	s and the	eir types.		
	 Understar 	nd Boolean a	lgebra and	Boolean	functio	ns logic gates	s switch	ing circuits
	and their	applications.		Doolean	Tunctio	lis, logic gales	5, 5 witch	ing circuits
	• Solve real	life problem	ne ucina fir	nita stata	and Tu	ring machines	1	
	• Solve lea	-me problem	is using m	nic-state		ing machines	•	
	Assimilat	e various gra	ph theoreti	ic concep	ots and f	amiliarize wit	h their ε	applications.
	l							Hours
		Conte	ent of Eacl	ı Unit				
Unit-I: Parti	ally Ordered Sets							18
Definitions,	examples and ba	sic properti	es of par	tially or	dered s	sets (poset),	Order	
isomorphism	, Hasse diagrams,	Dual of a p	oset, Duali	ty princi	iple, Ma	iximal and mi	inimal	
elements, Lea	ast upper bound an	d greatest up	per bound	, Buildin	g new p	oset, Maps be	etween	
posets.								
Init II. I at								10
	nocata I attiana	on alash	nia atm-a	turos	ublattia	on Droducto	h and	10
	posets, Lattices	as algebi	aic struc	ures, S		es, Products	and	
homomorphisms; Definitions, examples and properties of modular and distributive lattices;								

Complemented, relatively complemented and sectionally complemented lattices.

Unit-III: Boolean Algebras and Switching Circuits	18					
Boolean algebras, De Morgan's laws, Boolean homomorphism, Representation theorem;	-					
Boolean polynomials, Boolean polynomial functions, Disjunctive and conjunctive normal						
forms. Minimal forms of Boolean polynomials. Ouine-McCluskey method. Karnaugh						
diagrams, Switching circuits and applications.						
Unit-IV: Finite-State and Turing Machines	18					
Finite-state machines with outputs, and with no output; Deterministic and nodeterministic						
finite-state automaton; Turing machines: Definition, examples, and computations.						
Unit-V: Basic of Graphs	18					
Subgraphs, Pseudographs, Complete graphs, Bipartite graphs, Isomorphism of graphs,						
Paths and circuits, Eulerian circuits, Hamiltonian cycles, Adjacency matrix, Weighted						
graph, Travelling- salesman problem, Shortest path and Dijkstra's algorithm.						
References:						
1. Kenneth H. Rosen (2012). Discrete Mathematics and its Applications: With C	ombinatorics					
and Graph Theory (7th edition). McGraw-Hill, (Textbook).						
2. Edgar G. Goodaire & Michael M. Parmenter (2018). Discrete Mathematics	with Graph					
Theory (3rd edition). Pearson Education, (Textbook).						
3. B. A. Davey & H. A. Priestley (2002). Introduction to Lattices and Order (2	and edition).					
Cambridge University Press.						
4. Rudolf Lidl & Günter Pilz (1998), Applied Abstract Algebra (2nd edition), Sprin	ger.					
5 C. L. Liu (1985) Elements of Discrete Mathematics (2nd edition). McGraw-Hill	0					
J. C. L. LIU (1965). Elements of Discrete Mathematics (2nd edition). McGraw-Hill.						

Course	Course Name: Wavelets and Applications Course Code: SBSMAT 03 06 02 DSE 5106						03 06 02 DSE 5106	
No: 34								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Contact Hrs per	
2021-26	Integrated						Week: 06	
	BSc-MSc		5	1	0	6	Total Hours: 90	
	(Mathematics)							
Course	Most students today have had experience downloading compressed image or sound files							
Objective	from the web, or	using softw	are such a	is Adobe	Photosl	hop to enhanc	e a photo they have	
	taken, or watching a crime solving drama where the fingerprints of a perpetrator are							
	compared against those stored in AFIS. This course uses mathematical theory, recently							
	developed applications, and computation to introduce students to the basics of the							
	enhancement and compression of digital image and sound files. Students from							
	mathematics, phy	sics, and cor	nputer scie	ence mig	ht benefi	it from such a	course.	
Course	After going	g through thi	s course tl	he stude	nts will	be able to		
Outcomes	• Know bas	ic concepts of	of signals a	and syste	ms.			
	 Understar 	d the concer	nt of Haar s	maces				
	• Onderstan	iu ine conce _r	n of flaar s	spaces.				
	• Learn Fou	rier transfor	m and wav	elet tran	sform of	digital signals	s.	
	• Learn app	lications of v	wavelets to	the real	-world p	roblems.		
	 Apply wa 	velets in sigr	nal process	ing and i	mage pr	ocessing.		
			I	0	01	0	TT.	
		a .		T T •/			Hours	
		Conte	ent of Eacl	n Unit				
Unit-I: Signa	als and Systems						18	
Basic concep	ts of signals and	systems, Fre	quency sp	ectrum o	of signal	s; Classificati	on of	
signals: Disc	rete time signals	and continu	ous time	signals,	periodic	e and non-per	riodic	

Unit-II: Haar Scaling Function and Wavelet, Time-Frequency Analysis	18
Orthogonal functions, Orthonormal functions, Function spaces, Orthogonal basis functions,	

signals; Classification of systems: Linear, nonlinear, time-variant, time-invariant, stable

and unstable systems.

Haar scaling function, Haar spaces: Haar space VO, general Haar space Vi; Haar wavelet,	
Haar wavelet spaces: Haar wavelet space WO, general Haar wavelet space Wj;	
Decomposition and reconstruction, Time-frequency analysis, Orthogonal and orthonormal	
bases.	
Unit-III: Fourier Transforms and Wavelets	18
Discrete Fourier transform of a digital signal, Complex form of a Fourier series, Inverse	
discrete Fourier transform, Window Fourier transform, Short time Fourier transform,	
Admissibility condition for a wavelet, Classes of wavelets: Haar, Morlet, Maxican hat,	
Meyer and Daubechies wavelets; Wavelets with compact support.	
Unit–IV: Discrete Wavelet Transforms	18
Stationary and non-stationary signals, Haar transform, 1-level Haar transform, Multi-level	
Haar transform, Conservation and compaction of energy, Multiresolution analysis,	
Decomposition and reconstruction of signals using discrete wavelet transform (DWT).	
Unit–V: Applications	18
Wavelet series expansion using Haar and other wavelets, Applications in signal	
compression, Analysis and classification of audio signals using DWT, Signal de-	
noising: Image and ECG signals.	
References:	
1. Charles K. Chui (1992). An Introduction to Wavelets. Academic Press, (Textboo	k).
2. David K. Ruch & Patrick J. Van Fleet (2009), Wavelet Theory: An Elementa	ry Approach
with Applications. John Wiley & Sons, (Textbook).	
3. Ingrid Daubechies (1999). Ten Lectures on Wavelets. SIAM	
4. Michael W. Frazier (1999). An Introduction to Wavelets Through Linear Algeb	ora. Springer-
Verlag.	

- 5. Stéphane Mallat (2008). A Wavelet Tour of Signal Processing (3rd edition). Academic Press.
- M.J. Roberts (2004). Signals and Systems: Analysis Using Transform Methods and MATLAB. McGraw-Hill Education.
- 7. James S. Walker (2008). A Primer on Wavelets and Their Scientific Applications (2nd edition). Chapman & Hall/CRC, Taylor & Francis.

Course	Course Name: Number Theory			Cour	Course Code: SBSMAT 03 06 03 DSE 5106			
No: 35								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Contac	t Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	This course is ai	med at unde	rgraduate	mathema	tics maj	jors. It is a fin	rst cours	e in number
Objective	theory, and is intended to introduce students to number theoretic problems and to different							
	areas of number	theory. Nun	nber theory	y has a v	very long	g history com	pared to	some other
	areas of mather	natics, and	has many	application applied	ations,	especially to	coding	theory and
	cryptography.							
Course	After going	g through thi	s course th	ne stude	nts will	be able to		
Outcomes	 Learn about some important results in the theory of numbers including the prime number theorem, Chinese remainder theorem, Wilson's theorem and their consequences. Learn about number theoretic functions, modular arithmetic and their applications. Familiarize with modular arithmetic and find primitive roots of prime and composite numbers. Know about open problems in number theory, namely, the Goldbach conjecture and twin-prime conjecture. Apply public crypto systems, in particular, RSA. 							
		Conto	nt of Fool	. IInit				Hours
Content of Each Unit								
Unit-I: Distr	ibution of Primes	and Theory	of Congr	uencies	1		11 1	18
Linear Dioph	antine equation, P	rime countin	ig function	, Prime	number	uneorem, Gol	ubach	
conjecture, T	win-prime conject	ure, Odd per	ect numbe	ers conje	cture, Fe	ermat and Mer	senne	
primes, Cong	gruence relation an	d its propert	ies, Linear	congrue	ence and	Chinese rema	ainder	
theorem, Feri	mat's little theorem	, Wilson's the	eorem.					

Unit-II: Number Theoretic Functions	18
Number theoretic functions for sum and number of divisors, Multiplicative function, The	
Möbius inversion formula, Greatest integer function, Euler's phi-function and properties,	
Euler's theorem.	
	10
Unit-III: Primitive Roots	18
Order of an integer modulo n, Primitive roots for primes, Composite numbers having	
primitive roots; Definition of quadratic residue of an odd prime, Euler's criterion.	
Unit-IV: Quadratic Reciprocity Law	18
The Legendre symbol and its properties, Quadratic reciprocity, Quadratic congruencies	
with composite moduli.	
Unit-V: Applications	18
Public key encryption, RSA encryption and decryption with applications in security	
systems.	
References:	

- 1. David M. Burton (2007). Elementary Number Theory (7th edition). McGraw-Hill, (Textbook).
- 2. Neville Robbins (2007). Beginning Number Theory (2nd edition). Narosa, (Textbook).
- 3. Gareth A. Jones & J. Mary Jones (2005). Elementary Number Theory. Springer.
- 4. I.Niven (2012). An Introduction to the Theory of Numbers (5th edition). John Wiley & Sons.
- Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-Verlag.

Course	Course Name: Mathematical Finance			Cour	Course Code: SBSMAT 03 06 04 DSE 5106			
No: 36								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Contact	t Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	This course prov	vides an intro	oduction to	the bas	sic math	ematical con	cepts and	d techniques
Objective	used in finance and business, highlighting the inter-relationships of the mathematics and							
	developing problem solving skills with a particular emphasis on financial and business							
	applications							
Course								
Outcomos	Anter going	g unough un			IIIS WIII			
Outcomes	• Understa	nd financial	markets	and der	ivatives	including c	options	
	and futures.							
	Apprecia	te pricing ar	nd hedging	g of optio	ons, inte	rest rate swa	ps and	
	no-arbitra	age pricing c	concepts.	's form	ula Ite	integral ar	nd the	
	Black-So	choles mode	arysis, 100 1.	5 10111	iuia, in) integral al	iu the	
	• Study an	nd use He	dging pa	rameters	s, tradi	ng strategie	s and	
	currency	swaps.						
								Hours
		Conte	ent of Eacl	n Unit				
Unit-I: Basic	e Theory of Intere	st and Fixed	l-Income S	Securitie	es			18
Principal and	interest: simple, c	ompound an	d continuo	ous; Pres	ent and t	future value c	of cash	
flow streams	; Net present valu	e, Internal ra	ates of retu	urn and	their con	mparison; Inf	lation,	
Annuities; Bo	onds, Bond prices a	and yields, M	lacaulay du	uration a	nd modi	fied duration.		
Unit-II: Terr	m Structure of In	terest Rates,	, Bonds an	d Deriva	atives			18
Spot rates, f	orward rates and	explanation	s of term	structur	e; Runr	ning present	value,	
Floating- rate	e bonds, Immuniz	ation, Conve	exity; Puta	ble and	callable	bonds; Excl	hange-	
traded marke	ets and over-the-o	counter mar	kets; Deri	vatives:	Forward	d contracts,	Future	
contracts, Op	tions, Types of trad	ders, Hedgin	g, Speculat	tion, Arb	itrage.			

Unit-III: Mechanics of Options Markets	18					
No-arbitrage principle, Short selling, Forward price for an investment asset; Types of						
options: Call and put options, Option positions, Underlying assets, Factors affecting option						
prices, Upper and lower bounds for option prices, Put-call parity, Effect of dividends.						
Unit-IV: Stochastic Analysis of Stock Prices and Black-Scholes Model	18					
Binomial option pricing model, Risk neutral valuation: European and American options on						
assets following binomial tree model; Lognormal property of stock prices, Distribution of						
rate of return, Expected return, Volatility, Estimating volatility from historical data,						
Extension of risk-neutral valuation to assets following geometric Brownian motion, Black-						
Scholes formula for European options.						
Unit-V: Hedging Parameters, Trading Strategies and Swaps	18					
Hedging parameters: Delta, gamma, theta, rho and vega; Trading strategies involving						
options, Swaps, Mechanics of interest rate swaps, Comparative advantage argument,						
Valuation of interest rate swaps, Currency swaps, Valuation of currency swaps.						
References:						
1. John C. Hull & Sankarshan Basu (2018). Options, Futures and Other Deriv	vatives (10th					
edition). Pearson Education, (Textbook).						
2. David G. Luenberger (2013). Investment Science (2nd edition). Oxford University Press.						
3. Sheldon M. Ross (2011). An Elementary Introduction to Mathematical Finance						
(3rd edition). Cambridge University Press.						

Course	Course Name: Cryptography			Cou	Course Code: SBSMAT 03 06 05 DSE 5106			
No: 37								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Contac	t Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	Cryptography is	the practice	and study	of techn	iques fo	r securing co	mmunic	ations in the
Objective	presence of third parties. This course aims to impart knowledge and protect information in							
	order to ensure it	s integrity, c	onfidentia	lity, autł	nenticity	, and non-repu	udiation.	This course
	gives with a ba	sic understa	nding of	cryptogr	aphic co	oncepts and l	how to	apply them,
	implement secure	e protocols, k	key manag	ement co	oncepts,	key administr	ration an	d validation,
	and Public Key Infrastructure.							
Course	After going	g through thi	s course th	ne stude	nts will	be able to		
Outcomes						_		
	• Understar	id the differe	nce betwee	en classio	cal and r	nodern crypto	graphy.	
	• Learn the Standards	fundamental (DES & AE	s of crypto S) and RS	ography, A.	includin	g Data and Ao	dvanced	Encryption
	• Encrypt a well-know	nd decrypt m vn signature	essages us generation	ing bloc and veri	k cipher	s, sign and ver algorithms.	rify mess	sages using
	Know abo	out the aspect	ts of numb	er theory	which a	are relevant to	cryptog	raphy.
								Hours
		Conte	ent of Each	n Unit				
Unit I: Intro	duction to Crypto	graphy and	Classical	Cryptog	graphy			18
Cryptosystem	ns and basic cry	ptographic	tools: Sec	ret-key	cryptos	ystems, Publi	ic-key	
cryptosystem	s, Block and str	eam ciphers	s, Hybrid	cryptog	graphy,	Message inte	egrity:	
Message aut	hentication codes,	Signature	schemes,	Nonrepu	diation,	Certificates,	Hash	
functions, Ci	ryptographic proto	cols, Securi	ty; Hybric	l crypto	graphy:	Message inte	egrity,	
Cryptographi	c protocols, Secur	ity, Some sin	mple crypt	osystem	s, Shift	cipher, Substi	itution	
cipher, Affin	e cipher, Vigenère	e cipher, Hil	l cipher, I	Permutat	ion ciph	er, Stream ci	phers,	
Cryptanalysis	s of affine, substitu	tion, Vigenè	re, Hill and	l LFSR s	stream ci	phers.		

Unit-II: Cryptographic Security, Pseudo Randomness and Symmetric Key Ciphers	18
Shannon's theory Perfect secrecy Entropy Spurious keys and unicity distance. Bit	-
Shamon's theory, Terreet secrecy, Entropy, Sparlous keys and uniety distance, Dit	
generators, Security of pseudorandom bit generators. Substitution-permutation networks,	
Data encryption standard (DES), Description and analysis of DES; Advanced encryption	
standard (AES), Description and analysis of AES; Stream ciphers, Trivium.	
Unit-III: Basics of Number Theory and Public-Key Cryptography	18
Basics of number theory; Introduction to public-key cryptography, RSA cryptosystem,	
Implementing RSA; Primality testing, Legendre and Jacobi symbols, Solovay-Strassen	
algorithm, Miller-Rabin algorithm; Square roots modulo n, Factoring algorithms, Pollard	
P - 1 algorithm, Pollard rho algorithm, Dixon's random squares algorithm, Factoring	
algorithms in practice; Rabin cryptosystem and its security.	
	10
Unit-IV: More on Public-Key Cryptography	18
Basics of finite fields; ElGamal cryptosystem, Algorithms for the discrete logarithm	
problem, Shanks' algorithm, Pollard rho discrete logarithm algorithm, Pohlig-Hellman	
algorithm; Discrete logarithm algorithms in practice, Security of ElGamal systems, Bit	
security of discrete logarithms.	
Unit-V: Hash Functions and Signature Schemes	18
Hash functions and data integrity, SHA-3; RSA signature scheme, Security requirements	
for signature schemes, Signatures and Hash functions, ElGamal signature scheme, Security	
of ElGamal signature scheme, Certificates.	
References:	

- Jeffrey Hoffstein, Jill Pipher & Joseph H. Silverman (2014). An Introduction to Mathematical Cryptography (2nd edition). Springer, (Textbook).
- Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-Verlag, (Textbook).
- 3. Christof Paar & Jan Pelzl (2014). Understanding Cryptography. Springer.
- 4. Simon Rubinstein-Salzedo (2018). Cryptography. Springer.
- 5. Douglas R. Stinson & Maura B. Paterson (2019). Cryptography Theory and Practice (4th edition). Chapman & Hall/CRC Press, Taylor & Francis.

Course	Course Name: Advanced MechanicsCourse Code: SBSMAT 03 06 06 DSE 5106						DSE 5106	
No: 38								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Conta	ct Hrs per
2021-26	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Tota	l Hours: 90
	(Mathematics)							
Course	In this course, st	udents will b	be imparte	d knowle	edge to	enable them	to under	stand several
Objective	concepts of Adv	vanced Mec	hanics suc	ch as C	Central a	axis, Wrench	, Impul	sive motion,
	Streamlines, path	lines, Mome	nts and pro	oducts of	inertia.			
~								
Course	After going	g through thi	s course th	he stude	nts will	be able to		
Outcomes	• Understar	nd the reduction	ion of force	e system	in three	dimensions t	o a resul	ltant force
	acting at a	a base point a	and a result	tant coup	ole, whic	h is independ	lent of th	ne choice of
	base of re	duction.						
	Learn abo	out a null poin	nt, a null li	ne, and a	a null pla	ane with respe	ect to a s	system of
	forces act	ing on a rigic	l body toge	ether wit	h the ide	a of central a	xis.	•
	• Know the	inertia const	ants for a	rigid bod	lv and th	e equation of	momen	tal ellipsoid
	together v	with the idea	of principa	al axes ar	nd princi	pal moments	of inerti	a and to
	derive Eu	ler's equation	ns of motio	on of a ri	gid body	, moving abo	out a poi	nt which is
	kept fixed	l.						
	• Study the	kinematics a	nd kinetic	s of fluid	l motion	s to understar	nd the eq	uation of
	continuity	in Cartesian	, cylindric	al polar a	and sphe	rical polar co	ordinate	es which are
	used to de	erive Euler's	equations	and Berr	noulli's e	equation.		
	• Deal with	two-dimens	ional fluid	motion u	using the	e complex pot	tential a	nd also to
	understan	d the concep	ts of source	es, sinks	, double	ts and the ima	age syste	ems of these
	with regar	rd to a line ar	nd a circle.					
	1							Hours
		Conte	ent of Eacl	n Unit				
Unit-I: Statio	cs in Space							18
Forces in three	ee dimensions, Rec	duction to a f	force and a	a couple,	Equilib	rium of a sys	tem of	
particles, Cer	ntral axis and Wren	nch, Equatio	n of the ce	entral axi	is, Resul	tant wrench	of two	
wrenches; Nu	Ill points, lines and	planes with	respect to	a system	of force	es, Conjugate	forces	
and conjugate	e nnes.							
Unit-II: Mot	ion of a Rigid Boo	ły						18

Moments and products of inertia of some standard bodies, Momental ellipsoid, Principal	
axes and moments of inertia; Motion of a rigid body with a fixed point, Kinetic energy of a	
rigid body with a fixed point and angular momentum of a rigid body, Euler's equations of	
motion for a rigid body with a fixed point, Velocity and acceleration of a moving particle	
in cylindrical and spherical polar coordinates, Motion about a fixed axis, Compound	
pendulum.	
Unit-III: Kinematics of Fluid Motion	18
Lagrangian and Eulerian approaches, Material and convective derivatives, Velocity of a	
fluid at a point, Equation of continuity in Cartesian, cylindrical polar and spherical polar	
coordinates, Cylindrical and spherical symmetry, Boundary surface, Streamlines and	
pathlines, Steady and unsteady flows, Velocity potential, Rotational and irrotational	
motion, Vorticity vector and vortex lines.	
Unit-IV: Kinetics of Fluid Motion	18
Euler's equations of motion in Cartesian, cylindrical polar and spherical polar coordinates;	
Bernoulli's equation, Impulsive motion.	
	10
Unit-V: Motion in Two-Dimensions	18
Stream function Complex notential Designation singularities: Sources, sinks, doublets, complex	
Stream function, Complex potential, Basic singularities. Sources, sinks, doublets, complex	
potential due to these basic singularities; Image system of a simple source and a simple	
potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem.	
potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem. References:	
 Stream function, Complex potential, Basic singularities. Sources, sinks, doublets, complex potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem. References: A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics 	s. G. Bell &
 Stream function, Complex potential, Basic singularities. Sources, sinks, doublets, complex potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem. References: A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics Sons, (Textbook). 	s. G. Bell &
 Stream function, Complex potential, Basic singularities. Sources, sinks, doublets, complex potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem. References: A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics Sons, (Textbook). F. Chorlton (1967). A Textbook of Fluid Dynamics. CBS Publishers, (Textbook) 	s. G. Bell &
 Stream function, Complex potential, Basic singularities. Sources, sinks, doublets, complex potential due to these basic singularities; Image system of a simple source and a simple doublet with regard to a line and a circle, Milne-Thomson circle theorem. References: A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics Sons, (Textbook). F. Chorlton (1967). A Textbook of Fluid Dynamics. CBS Publishers, (Textbook). Michel Rieutord (2015). Fluid Dynamics An Introduction. Springer. 	s. G. Bell &

4. E. A. Milne (1965). Vectorial Mechanics, Methuen & Co.Limited. London.

Course No:	Course Name: Dissertation on Any				Course Code: SBSMAT 03 06 07 DSE 5106		
39	Topic of Mathematics						
Batch:	Program:	Sem:VI	L	Т	Р	Credits	Contact Hrs per
2021-26	Integrated						Week: 06
	BSc-MSc						
	(Mathematics)		5	1	0	6	Total Hours: 90

9. GENERIC ELECTIVE COURSES (GEC)

(Only for Other Departments)

Sr.	Course code	Course title	L	Т	Р	Credits
1.	SBSMAT 03 01 01 GE 4046	Object Oriented Programming in C++(P)	4	0	4	6
2.	SBSMAT 03 01 02 GE 5106	Finite Element Methods	5	1	0	6
3.	SBSMAT 03 01 03 GE5106	Algebra	5	1	0	6
4.	SBSMAT 03 02 01 GE 5106	Econometrics	5	1	0	6
5.	SBSMAT 03 02 02 GE 5106	Mathematical Finance	5	1	0	6
6.	SBSMAT 03 02 03 GE 5106	Real Analysis	5	1	0	6
7.	SBSMAT 03 03 01 GE 5106	Introductory Calculus and Analysis	5	1	0	6
8.	SBSMAT 03 03 02 GE 5106	Basic Mathematics for Social Sciences	5	1	0	6
9.	SBSMAT 03 03 03 GE 5106	Probability and Statistics	5	1	0	6
10.	SBSMAT 03 04 01 GE 5106	Vector Calculus	5	1	0	6
11.	SBSMAT 03 04 02 GE 5106	Mathematics for Chemists	5	1	0	6
12.	SBSMAT 03 04 03 GE 5106	Numerical Methods	5	1	0	6

Note: Any course from MOOCs for PG students on SWAYAM can also be taken as DSEC or GEC course on recommendations of the department.

Course	Course Name: Object Oriented Course Code: SBSMAT 03 01 01 GE						01 GE 4046
No: 01	Programming in C	C++					
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact Hrs
	UG	Ι					per Week:
							08
	Integrated		4	0	4	6	Total
	B.ScM.Sc.						Hours: 120
	(Mathematics)						
Total Eval	uation Marks:	Examinatio	on Durati	on:	3 hours	L	L
100							
CIE:		Pre-requisi	te of cou	rse:			
TEE:							
Course	The main objecti	ve of this co	ourse is t	to define a	nd highligh	t the import	ance of object
Objective	oriented program	ming. The s	tudents v	vill see ho	w to use c	oncepts of c	bject oriented
	programming in	real-life usin	ng C++	programmi	ng language	e. The stude	ents will learn
	potential C++ feat	tures like ove	rloading,	type conve	rsions, inher	itance.	
	After going	through this	course th	e students	will be able	to	
	• Write C p	rogrammes t		Asthematic	val problem		
	• Write C-p				ai problems		
	• Design alg					, , • т	1 . 1
	• Understan	a the OOPS	hikes El	ncapsulatio	on, Data At	ostraction, in	ineritance and
	Polymorp	nism.		c c	D · 1 D		
	Emphasize	e on the im	portance	ot use of	Friend Fu	nctions for	efficient C++
T T 1 4 N T	programm	ing.	<u>a</u>	81 1 1 1	•.		TT A
Unit No.			Content (of Each Un	lt		Hours of
-	0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Each Unit
1	OOP Paradign	n: Compa	rison	of Prog	amming	paradigms,	30
	Characteristics of	of Object-Or	iented P	rogrammin	ig Languag	es, Object-	

	based programming languages C++: Brief History of C++, Structure of a	
	C++ program, Difference between C and C++ - cin, cout, new, delete	
	operators, ANSI/ISO Standard C++, Comments, Working with	
	Variables and const Qualifiers. Enumeration, Arrays and Pointer.	
II	Implementing oops concepts in C++ Objects, Classes, Encapsulation,	30
	Data Abstraction, Inheritance, Polymorphism, Dynamic Binding,	
	Message Passing, Default Parameter Value, Using Reference variables	
	withFunctions.	
III	Abstract data types Class Component Object & Class Constructors	30
	Default and Copy Constructor Assignment operator deep and shallow	50
	coping Access modifiers – private publicand protected Implementing	
	Class Functions within Class declaration or outside the Class	
	dealeration instantiation of chicate Scope resolution operator. Working	
	with Ericard Evenetions, Using Static Class members	
	with Friend Functions, Using Static Class members.	
IV	Understanding Compile Time Polymorphism function overloading	30
	Rules of Operator Overloading (Unary and Binary) as member	
	function/friend function, Implementation of operator overloading of	
	Arithmetic Operators, Overloading Output/Input,Prefix/ Postfix	
	Increment and decrement Operators, Overloading comparison	
	operators, Assignment, subscript and function call Operator, concepts	
	of namespaces.	
Books Rec	commended:	
1. R. V	Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, TMH, 1997, (T	Fextbook).
2. B.I	Lippman and J. Lajoie, C++ Primer, 3rd Ed., Addison Wesley, 2000.	
3. Eck	tel, Thinking in C++, 2nd Ed., President, Mindview Inc., Prentice Hall.Para	asons, Object
Ori	ented Programming with C++, BPB Publication.	

4. B. Stroustrup, The C++ Programming Language, 3rd Ed., Addison Welsley.

Course No: 2	Course Name: Finite Element Methods				Course Code: SBSMAT 03 01 02			
					GE 5106			
Batch:	Programme:	Semester	Contact Hrs					
		:					per Week:	
	Integrated						06	
2021-	B.ScM.Sc.							
2026	(Mathematics)	II	5	1	0	6	Total	
							Hours: 90	
Total Evalu	ation Marks:	Examinati	on Duratio	n:	3 hours			
100								
CIE:								
TEE:								
Course	The objective of	of the cours	se includes	an introd	uction abo	ut different	finite element	
Objective	methods in one- two and three-dimensions. The course focuses on analyzing variety of							
	finite elements as	per the requ	irements of	f solutions of	of differenti	al equations.		
Course	A fton going	through the	a againa th	a studente i	will be able			
Course	After going		s course un	e students v	will be able			
Outcomes	• Describe	finite eleme	ent methods	5				
:	• Different	ial equation	s using fini	te element	methods			
	Emphasiz	e on the in	nportance of	of use of S	Simplex el	ements in t	wo and three	
	dimensio	ns.						
	• Understar	nd the Inter	polation f	unctions, 1	numerical	integration	and modeling	
	considera	tions.						
Unit No.			Content o	f Each Uni	t		Hours of	
							Each Unit	
Ι	Introduction to fi	inite elemen	t methods,	comparisor	n with finite	e difference	23	
	methods, Method	ls of weight	ed residual	s, collocati	ions, least	squares and		
	Galerkin's metho	od. Variation	nal formula	tion of bou	ındary valu	e problems		
	equivalence of C	alerkin and	Ritz metho	ods.				

II		Applications to solving simple problems of ordinary differential	22
		equations. Linear, quadratic and higher order elements in one	
		dimensional and assembly, solution of assembled system.	
III		Simplex elements in two and three dimensions, quadratic triangular	23
		elements, rectangular elements, serendipity elements and isoperimetric	
		elements and their assembly, discretization with curved boundaries.	
IV		Interpolation functions numerical integration and modeling	22
1 V		interpolation functions, numerical integration, and modeling	22
		considerations. Solution of two dimensional partial differential	
		equations under different Geometric conditions.	
Boo	ks Rec	commended.	
DUU			
	1. J	J.N. Reddy, Introduction to the Finite Element Methods, Tata McGra	w-Hill, 2003,
	(Textbook).	
	•		
	2.	K.J. Bathe, Finite Element Procedures, Prentice-Hall, 2001.	
	3. 1	R.D. Cook, D.S. Malkus and M.E. Plesha, Concepts and Applications of H	Finite Element
		Analysis, John Wiley and Sons, 2002.	
	-	,,,,,,	
	4.	Γ. J.R. Hughes, The Finite Element Method: Linear Static and Dynamic F	Finite Element

- Analysis, Dover Publication, 2000.
- 5. G. R. Buchanan, Finite Element Analysis, McGraw Hill, 1994.

Course	Course Name:	Algebra	Cour	rse Code: SBS	SMAT 03	01 03 GE	5106
No: 3							
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact
							Hrs per
	Integrated						Week:
2021-2026	B.ScM.Sc.	Ι					06
	(Mathematics)						
			5	1	0	6	Total
							Hours:
							90
Total Evalu	ation Marks:	Examination D	uration:	3 hour	rs	1	·
100							
		Due veguiaite e	f aggregation NLA				
CIE:		Pre-requisite of	I course: N.A				
TEE:							
Course	The objective of	the course is to i	ntroduce basic	e structures of	algebra li	ike matrice	es, system
Objective	of linear equati	on and linear t	ransformation	which are	the main	pillars of	f modern
	mathematics. Th	e course gives th	ne student a g	good mathema	tical mat	urity and e	enables to
	build mathematic	cal thinking and s	kill.				
Course	After going	through this co	urse the stude	ents will be at	ole to		
Outcomes:	• Work wi	th the trigonome	etric form of	complex nun	nbers incl	luding De-	-Moivre's
	formula.	-		-		-	
	• Be famili	ar with the Euler	form $re^{i\Theta}$ of c	complex numb	bers		
	• Apply the	e elementary oper	rations on the	matrices. Con	npute the		
	eigen va	alues, eigen fund	ction, characte	eristic equatio	n and mir	nimal poly	nomial of
	a given n	- natrix.		-		- •	
	• Obtain th	e solution of the	systems of lin	near equations	s using the	e concept o	of rank of
	matrices			_	-	-	
Unit No.		Conte	ent of Each U	nit		Hours	of Each
						U	nit

Ι	Polar representation of complex numbers, n th roots of unity, De	23
	Moivre's theorem for rational indices and its applications.	
	Equivalence relations, Functions, Composition of functions,	
	Invertible functions, One to one correspondence and cardinality	
	of a set.	
II	Well-ordering property of positive integers, Division algorithm,	23
	Divisibility and Euclidean algorithm, Congruence relation	
	between integers, Principles of Mathematical Induction,	
	statement of Fundamental Theorem of Arithmetic.	
III	Systems of linear equations, row reduction and echelon forms,	22
	vector equations, the matrix equation Ax=b, solution sets of	
	linear systems, applications of linear systems, linear	
	independence	
IV	Introduction to linear transformations, matrix of a linear	22
	transformation, inverse of a matrix, Characterizations of invertible	
	matrices. Subspaces of \mathbf{R}^{n} , dimension of subspaces \mathbf{R}^{n} and rank of	
	a matrix, Eigenvalues, Eigen Vectors and Characteristic Equation	
	of a matrix.	
Books Reco	ommended:	
1. Hall	& Night Higher Algebra, Arihant Publishers, 2013, (Textbook).	
		D J J J J J J J J J J
2. K. H	loffman, R.A. Kunze, Linerar Algebra 2nd Ed., Prentice-Hall of India	a Pvt. Ltd.,1971.
3. S. L.	Loney, Plane Trigonometry, Arihant Publishers, 2016.	
4. D. C Repr	Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education fint, 2007, (Textbook).	on Asia, Indian
5. R.G.	Bartle and D. R. Sherbert, Introduction to Real Analysis. Willy Std	Edition, 2014.
6. B Da	as & B N Mukherjee, Higher Trigonometry, U N Dhur & Sons, 2007	
7. T. A	ndreescu and D. Andrica, Complex Numbers from A to Z, Birkhause	er,2006.
8. E.C	G. Goodaire and M. M. Parmenter, Discrete Mathematics with Graph	Theory, 3rd Ed.,
Pear	rson Education (Singapore) P. Ltd., Indian Reprint, 2005.	-

Course	Course Name: Econometrics				Course Code: SBSMAT 03 02		
No: 4					01 GE 5106	5	
Batch:	Programme:	Semester	L	Т	Р	Credits	Contact
		:					Hrs per
	Integrated						Week:
2021-	B.ScM.Sc.	Π					06
2026	(Mathematics)		5	1	0	6	Total
							Hours:
							90
Total Eval	uation Marks:	Examinati	on Durat	tion:	3 hours	I	
100							
CIE:		Pre-requis	ite of cou	irse:			
TEE:							
Course	Econometrics is	a set of r	esearch t	ools used	d to estimate	e and test	economic
Objective	relationships. T	he methods	taught	in this i	introductory	course ca	n also be
	employed in th	e business	discipline	es of acc	counting, fina	ance, marl	keting and
	management and	l in many so	cial scier	ice discip	lines. The air	n of this c	ourse is to
	provide you with	n the skills h	elpful in	filling the	e gap betwee	n being "a	student of
	economics" and	being "a pra	cticing ec	onomist.	"		
Course	A ftor going	through th	ia courso	the stud	onte chould h	a abla	
Outcomo	to	g unougn un		the stude	ents should b		
outcome	Design m	a dala and a			ad to Doonoo		
8	• Design ii			ems reiat		inc issues.	
	• Describe	the Statistic	al Concep	ots			
	• Understa	nd the Detec	tion, Ren	nedies and	d Multicolline	earity.	
	• Be famili	ars with the	Type I ar	nd Type I	I errors.		
Unit No.		C	Content o	f Each U	nit		Hours of
							Each
							Unit
Ι	Statistical Conc	cepts Norm	al distril	oution; c	chi-square, t	and F-	22

	distributions; estimation of parameters; properties of estimators;								
	testing of hypotheses: defining statistical hypotheses; distributions of								
	test statistics; testing hypotheses related to population parameters;								
	Type I and Type II errors; power of a test; tests for comparing								
	parameters from two samples.								
II	Simple Linear Regression Model: Two Variable Case Estimation of	23							
	model by method of ordinary least squares; properties of estimators;								
	goodness of fit; tests of hypotheses; scaling and units of								
	measurement; confidence intervals; Gauss-Markov theorem;								
	forecasting.								
		22							
111	Multiple Linear Regression Model Estimation of parameters;	23							
	properties of OLS estimators; goodness of fit - R2 and adjusted								
	R2 ; partial regression coefficients; testing hypotheses –								
	individual and joint; functional forms of regression models;								
	qualitative (dummy) independent variables.								
IV	Violations of Classical Assumptions: Consequences Detection and	22							
1	Remedies Multicollinearity: heteroscedasticity: serial correlation								
	Specification Analysis Omission of a relevant variable, inclusion of								
	specification Analysis Onlission of a relevant variable, inclusion of								
	irrelevant variable; tests of specification errors.								
Books Recommended:									
1. J. L. Devore, Probability and Statistics for Engineers, Cengage Learning, 2010,									
(Textbook).									
2. J. E. Freund, Mathematical Statistics, Prentice Hall, 1992.									
3. R. J. Larsen and Morris L. Marx, An Introduction to Mathematical Statistics and									
its Applications, Prentice Hall,2011.									
 D. N. Gujarati and D.C. Porter, Essentials of Econometrics, McGraw Hill, 4th Ed., International Edition,2009, (Textbook). 									
5. C. I Indi	 C. Dougherty, Introduction to Econometrics, Oxford University Press, 3rd Ed., Indian edition,2007. 								
1									
Course	Course Name: Ma	athematical l	Course Code: SBSMAT 03 02 02 GE						
-------------	--------------------	---	---------------------------------	------------	----------------	---------------	----------------	--	--
No: 5					5106				
Batch:	Programme:	Semester	L	Т	Р	Credits	Contact		
		:					Hrs per		
	Integrated						Week: 06		
2021-	B.ScM.Sc.								
2026	(Mathematics)	II	5	1	0	б	Total		
							Hours: 90		
Total Evalu	ation Marks:	Examinati	on Durati	on:	3 hours	8			
100									
CIE:									
TEE:									
Course	This course introd	This course introduces the basic concepts of Financial Management such as Insurance and							
Objective	Measurement of re	eturns under	uncertaint	y situatio	ons. The philo	sophy of this	course is that		
	Time value of Me	oney - Inter	est rate ar	nd discou	nt rate play	a fundamenta	l role in Life		
	Insurance Mathem	atics – Cons	truction of	Morality	Tables.				
Course				atu da ata		4.0			
Outcomos	After going th	rough this c	tourse the	students	will be able				
	Build quar	ititative mod	dels of fin	ancial ma	athematics/in	dustries			
•	Apply mo	odels to ob	otain info	ormation	of practica	l value in t	the financial		
	mathemati	CS							
	• Understan	d the terms	random re	turns, po	rtfolio mean	return and va	riance.		
	• Design mo	odels and so	lve proble	ms relate	ed to financia	l issues			
Unit No.			Content o	of Each U	nit		Hours of		
							Each Unit		
Ι	Basic principles:	Compariso	on, arbitr	age and	risk aversi	on, Interest	20		
	(simple and comp	pound, discr	rete and co	ontinuou	s), time valu	e of money,			
	inflation, net pro	esent value	, internal	rate of	return (cal	culation by			

	bisection and Newton-Raphson methods), comparison of NPV and IRR.						
Ш	Bonds, bond prices and yields, Macaulay and modified duration, term structure of interest rates: spot and forward rates, explanations of term structure, running present value, floating-rate bonds, immunization, convexity, putable and callable bonds.	24					
ш	Asset return, short selling, portfolio return, (brief introduction to expectation, variance, covariance and correlation), random returns, portfolio mean return and variance, diversification, portfolio diagram, feasible set, Markowitz model (review of Lagrange multipliers for 1 and 2 constraints), Two fund theorem, risk free assets, One fund theorem, capital market line, Sharpe index.	23					
IV	Capital Asset Pricing Model (CAPM), betas of stocks and portfolios, security market line, use of CAPM in investment analysis and as a pricing formula, Jensen's index.	23					
Books Rec	commended:						
1. D.C	G. Luenberger, Investment Science, Oxford University Press, Delhi, 1998.						
2. J. C repr	 J. C. Hull, Options, Futures and Other Derivatives, 6th Ed., Prentice-Hall India, Indian reprint,2006, (Textbook). 						
3. S. R Uni	coss, An Elementary Introduction to Mathematical Finance, 2nd Ed., Cambr versity Press, USA,2003.	idge					

Course	Course Name: H	Real Analysi	S		Course	Code: SBSMA	AT 03 02 03			
No: 06			GE 5106							
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact			
							Hrs per			
	Integrated						Week: 06			
2021-2026	B.ScM.Sc.	II								
	(Mathematics)		5	1	0	6	Total			
							Hours: 90			
Total Evalua	tion Marks:	Examinatio	n Duration.		3 hours					
100					5 nouis					
CIE:		Pre-requisi	te of course:							
TEE:										
Course	This course prese	This course presents a rigorous treatment of fundamental concepts in analysis. To introduce								
Objective	students to the	fundamenta	als of math	ematical	analysis	and reading	and writing			
	mathematical pro	mathematical proofs. The course objective is to understand the axiomatic foundation of the								
	real number syste	em, in particu	lar the notior	n of compl	leteness ar	nd some of its o	consequences;			
	understand the co	oncepts neig	hborhood of	a point,	countable	e sets , sequen	ce and series,			
	rigorously define	ed;. Students	should also	have atta	ined a ba	usic level of c	ompetency in			
	developing their	own mathe	matical argu	ments and	d commu	nicating them	to others in			
	writing									
Course	After going	through thi	a course the	atudanta y	uill be abl	a to				
Outcomos	Arter going	g unougn un	s course the	students v						
Outcomes:	• Identify t	he propertie	s of the nu	mber syst	tem and	Describe vario	ous analytical			
	properties	of the real n	umber systen	1.						
	• Explain the table of	he concept o	f sequences a	and their t	ypes and	Identify the co	onvergence of			
	sequences	and series o	f positive terr	ns.						
	Apply var	rious importa	nt convergen	ce tests to	the given	series.				
	• Understar	nd the diffe	rence betwe	en condit	ional and	l absolute co	nvergence of			
	alternating	g series.								
Unit No.			Content of	Each Uni	t		Hours of			
							Each Unit			

Ι	Review of Algebraic and Order Properties of <i>R</i> , neighborhood of a point	23				
	in R , Idea of countable sets, uncountable sets and uncountability of R .					
	Bounded above sets, Bounded below sets, Bounded Sets, Unbounded					
	sets, Suprema and Infima, The Completeness Property of R, The					
	Archimedean Property.					
		22				
11	Density of Rational (and Irrational) numbers in <i>R</i> , Intervals. Limit points	23				
	of a set, Isolated points, Illustrations of Bolzano-Weierstrass theorem for					
	sets. Sequences, Bounded sequence, Convergent sequence, Limit of a					
	sequence.					
III	Limit Theorems, Monotone Sequences, Monotone Convergence	22				
	Theorem Subsequences Divergence Criteria Monotone Subsequence					
	Theorem (statement only) Bolzano Weierstrass Theorem for Sequences					
	Cauchy sequence, Cauchy's Convergence Criterion					
	Cauchy sequence, Cauchy's Convergence Chierton.					
IV	Infinite series, convergence and divergence of infinite series, Cauchy	22				
	Criterion, Test for Convergence: Comparison test, Limit Comparison					
	test, Ratio Test, Cauchy's n th root test, Integral test, Alternating series,					
	Leibniz test, Absolute and Conditional convergence.					
Books Reco	mmended:					
1. R.G. (Asia	Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wile) Pvt. Ltd., Singapore, 2002, (Textbook).	ey and Sons				
2. I. Ku	mar and S. Kumarasen, A Basic Course in Real Analysis, CRC Press, 2014,	(Textbook).				
3. G.B.	Thomas and R. L. Finney, Calculus, Pearson, 9th Ed, 2005.					
4. G.G. Bartle	 G. G. Bilodeau, P. R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett,2010. 					
5. S. Th 2001	omson, A. M. Bruckner and J. B. Bruckner, Elementary Real Analysis, Pren.	ntice Hall,				
6. S.K.	Berberian, A First Course in Real Analysis, Springer Verlag, New York, 199	94.				

Course No:	Course Name:			Cour	Course Code: SBSMAT 03 03 01 GE 5106				
07	Introductory Calo	culus and Ana	lysis						
Batch:	Program: UG	Sem: III	L	Т	Р	Credits	Contact	Hrs per	
							Week: 0	6	
			5	1	0	6	Total Ho	ours: 90	
Course	The objective of	f the course	is to intro	oduce bas	ic struct	ures of mathe	ematics lil	ke limit,	
Objective	continuity, differ	entiability int	egration,	sequence,	and serie	es. The cours	e gives the	e student	
	a good mathemat	ical maturity	and enable	es to build	mathem	atical thinking	g and skill.		
Course	After go	ing through t	his cours	e the stude	ents will	be able to			
Outcomes	Assimilat	e the notions	of limit	of a seque	nce and	convergence	of a series	s of real	
	numbers.	numbers.							
	• Calculate the limit and examine the continuity of a function at a point.								
	• Understand the consequences of various mean value theorems for differentiable								
	functions.								
	• Understar	nd the integrat	ion and th	neir applica	ations.				
								Hours	
		Con	tent of E	ach Unit					
Unit I: Succe	essive differentiati	on and Leibni	tz theore	m, limits, (continuit	ty, and differe	ntiability,	18	
Mean value t	heorem, Taylors Th	neorem, Maxi	ma and N	linima.					
Unit-II: Rier	nann integration,	Darboux the	orem, Fu	ndamental	theore	m of integral	Calculus,	18	
Improper inte	egrals, Beta functio	on, Gamma fu	inctions a	nd related	definite	integrals. Sur	face area		
and Volume.									
Unit-III: Cor	overgence of seque	ences and seri	es, power	series.				18	
Unit-IV: Par	tial differentiatior	n, Euler's the	orem and	d chain ru	le. Direc	ctional deriva	tives and	18	
gradients, ma	ixima and minima,	Lagrange mu	Itipliers.						
Unit-V: Doul	ble and Triple inte	egration, Jaco	bians and	I change c	of variab	les. Parametri	ization of	18	
Curves and su	and Stokes	ids, line and s	urface int	egrais. Div	/ergence	and curl, The	orems of		
Gieen, Gauss									

References:

- 1. M. D. Weir, J. Hass and F. R. Giordano: *Thomas' Calculus*, 11th edition, Pearson, 2008 (Textbook).
- 2. T. M. Apostol: Calculus, Volumes 1 and 2, 2nd edition, Wiley, 1980.
- 3. J. Stewart: *Calculus*, 5th edition, Thomson, 2003.
- 4. N. Piskunov: Differential and Integral Calculus, Mir Publishers, 1969.
- 5. S. Narayan: A Textbook of Vector Calculus, S. Chand, 2003.

Course	Course Name: B	asic Mathe	ematics	for	Cour	se Code:	SBSMAT 03 03 02 0	GE 5106
No: 08	Social Sciences							
Batch:	Program: UG	Sem: III	L	Т	Р	Credits	Contact Hrs per V	Veek: 06
			5	1	0	6	Total Hour	rs: 90
Course	The main objective	ve of this c	ourse is	to en	courag	ge students	to develop a working	ng knowledge
Objective	of the basic Math	ematics for	r social	scien	ce and	will prese	nt some of the ideas	that form the
	foundation of qua	antitative w	ork in	the so	cial sc	iences. In	particular, topics fro	om logarithm,
	set theory, mat	rix theory	and	calcul	lus wi	ill be dis	scussed with emph	nasis on the
	understanding of concepts and the development of intuition.							
Course	After going	g through t	his cou	rse th	e stude	ents will b	e able to	
Outcomes	 Explain the role in base Demonstr 	 Explain the fundamental concepts of indices, logarithm and antilogarithm and their role in basic Mathematics for social science. Demonstrate accurate and officient use of set theory and Vern diagram. 						
	Demonstr		e und er	-	it use c			•
	Understar	nd and use t	the term	ns: fur nd Co	nction,	relation, so	eries arithmetic, geor	metric
	progressio	, i cilliuu	uions a		moma	uons.		
	• Understar function,	nd the conc logical reas	epts and soning,	l prop proba	berties of bility a	of limits, c and descrip	continuity and differe otive statistics	entiation of a
	I	Con	tent of	Each	Unit			Hours
Unit-I								18
Binary numb simple applie calendar, cloc sets, Venn dia types of relati	ers, indices, logari cations of logarith ck, time, work and agram, De Morgan ions.	thm and a nm and ar distance, i 's laws, pro	ntilogar atilogari mensura oblem se	ithm, thm, ation, olving	laws a numer seating using	and proper rical probl g arrangen Venn diag	ties of logarithms, ems on averages, nent, sets, types of gram, relations and	
Unit-II								18
Introduction	of sequences, se	ries arithn	netic a	nd g	eometr	ic progres	ssion, relationship	
between AM	and GM. Basic c	concepts of	permu	tation	s and	combinati	ons, permutations,	
combinations	with standard res	ults. Introd	lucing	functi	ons,	domain	and range of a	
function,	types of function	ions (Poly	nomial	funct	ion; R	ational fu	nction; Logarithm	
function, Ex	ponential function	; Modulus	functi	on; (Greates	st Integer	function, Signum	
function), Gra	aphical representat	ion of func	tions.					

Unit-III	18						
Concept of limits and continuity of a function, instantaneous rates of change,							
differentiation as a process of finding derivative, derivatives of algebraic functions using							
Chain rule. Mathematically acceptable statements, connecting words/ phrases in							
Mathematical statement consolidating the understanding of "if and only if (necessary and							
sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and							
their use through variety of examples related to real life and Mathematics problems based							
on logical reasoning (coding-decoding, odd man out, blood, relation, syllogism etc).							
Unit-IV	18						
Random experiment, sample space, events, mutually exclusive events. Independent and							
dependent Events, law of total probability, Bayes' Theorem.							
Unit-V	18						
Data on various scales (nominal, ordinal, interval and ratio scale), data representation and							
visualization, data interpretation (dispersion, deviation, variance, skewness and kurtosis),							
percentile rank and quartile rank, correlation (Pearson and Spearman method of							
correlation), applications of descriptive statistics using real time data.							
References:							
 Gill J. Essential Mathematics for Political and Social Research, Cambridge Univ 2016 (Textbook). 	ersity Press,						
2. Haeussler E., Paul R. and Wood R. Introductory Mathematical Analysis for Busin	ness,						

3. Goldstein L., Lay D., and Schneider D. Calculus and Its Applications, 14th Edition.

Economics, and the Life and Social Sciences, 15th edition. Prentice-Hall, 2015.

- 4. Hagle T. Basic Math for Social Scientists: Problems and Solutions, 1996.
- 5. Hagle T. Basic Math for Social Scientists: Concepts, 1996.

Prentice Hall, 2014.

6. Kleppner D. and Ramsey N. Quick Calculus. Wiley, 1995.

Course	Course Name:	Probability	and St	atistics	cou	rse Code: S	SBSMAT 03 03 03 GI	E 5106	
No: 09									
Batch:	Program: UG	Sem: III	L	Т	Р	Credits	Contact Hrs per W	eek: 06	
			5	1	0	6	Total Hours:	90	
Course	To provide an understanding of the basic concepts in probability theory and statistical								
Objective	analysis. Students will learn the fundamental theory of distribution of random variables, th								
	basic theory and	d technique	s of pa	aramete	er estimat	ion and tes	sts of hypotheses. Aft	er taking	
	this course, stud	lents will b	e able	to use	calculator	rs and table	es to perform simple	statistical	
	analyses for sma	all samples	and us	e popu	ılar statist	ics package	es, such as SAS, SPSS	S, S-Plus,	
	R or MATLAB,	to perform	simple	e and so	ophisticate	ed analyses	for large samples.		
Course	After going	g through th	nis cou	trse the	e students	will be ab	le to		
Outcomes	• Understa	and distribut	tions in	the st	udy of the	ioint beha	viour of two random v	ariables	
	 Establish a formulation halping to predict one veriable in terms of the other that is 								
	- Establish a formulation helping to predict one variable in terms of the other that is,								
	• Understa	l frequencia	nnn s of so	many	natural po	opulations	avhibit a ball shaped of		
	empirica	i frequencio	Contor			opulations,	exhibit a bell shaped c	Hours	
Unit_I. Prol	hability Function	s and Mor	nont C	oporat	ing Func	tion		18	
Basic notio	ns of probability	\sim Conditio	nal pr	ohabili	ty and i	ndenenden	e Bave's theorem:	10	
Random va	riables - Discrete	e and conti		Cum	ilative di	stribution t	function Probability		
mass/density	y functions: Tr	ansformatio	ns M	athem:	atical exi	nectation	Moments Moment		
generating f	unction Characte	ristic functi	on	amenta		pectation,	Woments, Woment		
generating i	unetion, characte	fishe functi	011.						
Unit-II: Un	ivariate Discrete	and Conti	nuous	Distril	butions			18	
Discrete dis	stributions: Unife	orm, Berno	oulli, I	Binomi	al, Nega	tive binom	ial, Geometric and		
Poisson; Co	ontinuous distrib	utions: Un	iform,	Gamm	na, Expo	nential, Cl	ni-square, Beta and		
normal; Nor	mal approximatio	on to the bin	omial	distribı	ution.				
Unit-III• Ri	variate Distribut	tion						18	
Ioint cumul	ative distribution	function a	and its	nrone	rties Ioir	nt probabil	ity density function	10	
Marginal di	istributions Fyn	ectation of	funct ²	ion of	two ran	dom varia	bles Ioint moment		
generating f	unction Condition	nal distribut	tions a	nd expe	ectations	ulu vulu	sites, some moment		

Unit-IV: Correlation, Regression and Central Limit Theorem	18						
The Correlation coefficient, Covariance, Calculation of covariance from joint moment							
generating function, Independent random variables, Linear regression for two variables, The							
method of least squares, Bivariate normal distribution, Chebyshev's theorem, Strong law of							
large numbers, Central limit theorem and weak law of large numbers.							
Unit-V: Modeling Uncertainty	18						
Uncertainty, Information and entropy, Uniform Priors, Polya's urn model and random graphs.							
References:							

- 1. Irwin Miller & Marylees Miller (2014). John E. Freund's Mathematical Statistics with Applications (8thedition). Pearson. Dorling Kindersley Pvt. Ltd. India, (**Textbook**).
- 2. Robert V. Hogg, Joseph W. McKean & Allen T. Craig (2013). Introduction to Mathematical Statistics (7th edition), Pearson Education.
- 3. Jim Pitman (1993). Probability, Springer-Verlag.
- 4. Sheldon M. Ross (2014). Introduction to Probability Models (11th edition). Elsevier.
- 5. M. Yaglom and I. M. Yaglom (1983). Probability and Information. D. Reidel Publishing Company. Distributed by Hindustan Publishing Corporation (India) Delhi.
- 6. V.K. Kapoor and S. C. Gupta (2018). Fundamental of Mathematical Statistics, S. Chand & Sons.

Course No:	Course Name: Vector Calculus				Course Code: SBSMAT 03 04 01 GE 5106				
10									
Batch:	Program: UG	Sem: IV	L	Т	Р	Credits	Contact Hrs per	Week: 06	
			5	1	0	6	Total Hour	·s: 90	
Course	The course prov	ides on intr	roduct	ion to f	unction	of severa	l real variables an	d classical	
Objective	vector analysis	The course provides an introduction to functions of several real variables and classical							
Objective				1 are. p	artiar u		gradients, fille a		
	integrals; vector	valued func	tions,	diverge	nce, cui	and flux	of vector fields, th	e theorems	
	of Green and Sto	kes, the dive	ergenc	theore	m, and	application	8		
Course	After go	ing through	this	course t	he stude	ents will be	e able to		
Outcomes	• Find the T	Triple produ	ct of I	Products	and the	ir Applicati	ons		
	• Understan	d the concep	ot of I	Line integ	gral and	Surface inte	egral		
	• Understand the concept of Tensor								
Content of Each Unit						Hours			
Unit I Vector	rs, Scalars and Do	t Product, T	riple	Products	, Scalar	and Vector	r Fields, Methods	18	
of Integration	and Examples,		-						
Unit-II: Line	Integrals, Surface	and Volum	e Inte	grals wi	th Exan	nples, Partia	al Differentiation,	18	
Taylor Series	and Gradients, Di	vergence, L	aplaci	an and C	Curl				
Unit-III: Sut	ffix Notation, Kro	necker Delt	a and	Alterna	ting Te	ensor and F	Review, Relations	18	
Among and	Properties of Vect	or and Ten	sor O	peration	s, Gaus	s' Diverger	nce Theorem and		
Applications,	Stokes Theorem	and Applica	uons,	More of	l Gauss	and Stoke	s Theorems		
Unit-IV: Cur	vilinear Coordinat	es, Gradient	, Dive	ergence	and Cur	l in Curvili	near Coordinates,	18	
Examples in	Cylindrical and Sp	herical Coor	rdinat	es					
Unit-V:								18	
Tensors and	Applications and	Review, Te	nsors	and Ap	plication	ns, Physica	1 Applications of		
Tensors, App	lications								
References:									
1. Georg	ge B. Thomas, Mau	rice D. Wei	r and	Joel Has	s, Thon	nas Calculu	s, 13/e, Pearson		
Publishers, 20	013, (Textbook).								
2. R.K.J	ain and S.R.K.Iye	engar, Adva	nced	Enginee	ring M	athematics	, 3/e, Alpha Scien	ce	
International	Ltd., 2002.	-		-	-		-		

3. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018.

Course	Course Name: Mathematics forCourse Code: SBSMAT 03 04 02 GE 5106						E 5106		
No: 11	Chemists								
Batch:	Program: UG	Sem: IV	L	Т	Р	Credits	Contact H	lrs per	
							Week: 06		
			5	1	0	6	Total	Hours:	
							9	0	
Course	The main object	ive of thi	s course	is to int	roduce th	e students to th	e exciting	world of	
Objective	numerical analysis, differential equations and statistics.								
Course	After cor	npleting t	his cours	se, stude	nt is expe	cted to learn th	e followin	g:	
Outcomes									
	• Learn the and their	basics of a	numerica es.	al analys	is, to calc	ulate the errors	in approxi	mations	
	• Understan	d the basi	ics of dif	ferential	equation	s to solve the fi	irst order li	inear	
	different	tial equati	ons and	second o	order diffe	erential equation	ns.		
	• Analyze th	he singula	r points,	power s	eries solu	tion of differer	ntial equati	on at	
	regular a their sol	and irregu utions.	lar singu	ilar poin	ts, Bessel	's and Legendr	e's equation	ons and	
	• Use the b	asics too	ls of sta learn Ga	tistics a	nd by us	ing these techi	niques to a	measures	
		Conte	nt of Ea	ch Unit		nur uistribution	5•	Hours	
Unit-I								15	
Algebraic, t	ranscendental fun	ctions, ap	oproxima	ation, er	rors in a	pproximation,	absolute,		
relative and	percentage error	rs, matric	es and	their pro	operties,	some special	matrices,		
matrix alge	bra, the inverse	matrix, 1	inear tra	ansforma	ations, or	thogonal matr	rices and		
orthogonal t	ransformations.								
Unit-II								15	
Solution of	differential equa	ations, fi	rst-order	linear	equations	s- separable e	equations,		
homogeneou	is linear equation	ons, non	-homoge	eneous	linear e	quations, seco	ond-order		
differential	equations with co	onstant co	oefficien	its, gene	ral soluti	on, particular	solution,		
linear equati	ons in chemical ki	netics, ha	rmonic o	oscillator	and				
some other a	applications								

Unit-III	15
Singular points, power series solution of differential equation at regular and irregular	
singular points, Bessel's and Legendre's equations and their solutions, partial	
differentiation, types of partial differential equations.	
Unit-IV	
Line integrals, double integrals, change of variables, polar coordinates, volum integrals, Laplacian operator, finite difference operators.	e
Unit-V	15
Descriptive statistics, measures of central tendency, measures of dispersion, frequency an probability, permutations and combinations, binomial distribution, Gaussian distribution.	£
References:	
 Steiner, E. The Chemistry Maths Book. 2ndedition, Oxford University Press (Textbook). 	, 2008,
2. Gupta, S. C. and Kapoor, V.K. Fundamentals of Mathematical Statistics. S. Chand & Sons, 2014.	
3. Lipschutz, S. and Lipson, M. Linear Algebra. 3 rd edition, Tata McGraw-Hil	1,2005.
4. Raisinghania, M. D. Advanced Differential Equations. S. Chand & Compar	ıy
Ltd. New Delhi, 2001.	

Course No:	Course Name: Numerical Methods			Course Code: SBSMAT 03 04 03 GE			
12					3104		
Batch:	Program: UG	Sem: IV	L	Т	Р	Credits	Contact
							Hrs per
							Week: 06
			5	1	0	6	Total
							Hours: 90
Course	The rapid grow	th of science	ce and techr	ology du	ring last	few decades	has made a
Objective	tremendous change in the nature of various mathematical problems. It is very difficult and						
	almost impossible to get analytical solutions in case of many of these problems. These						
	shortcomings of	shortcomings of analytical solutions lead us to various numerical techniques developed for					
	different types of mathematical problems seem to be an excellent option. The course						
	objective is to acquaint the students with a wide range of numerical methods to solve						
	algebraic and transcendental equations, linear system of equations, interpolation and curve						
	fitting problems,	numerical in	tegration, init	ial and bou	undary va	lue problems, e	etc.
Course	After going through this course the students will be able to						
Outcomes	• Learn numerical technique to find the numerical solutions of system of linear and						
	nonlinear equations and some curve fitting problems						
	• Find the Numerical solutions of Non-linear equations						
	• Familiarize the students with advantages and limitations of numerical techniques						
	• Solve interpolation problems, difference equations and Eigen value problems						
		Conte	ent of Each U	nit			Hours
Unit I Nature	Unit I Nature of numerical computations: errors and their propagation18					18	
Unit-II: Numerical solution of systems of linear equations: Direct methods for solving 18							
linear systems, error analysis. The residual correction method. Iteration methods, Error							
prediction an							
Unit-III: Ma	Unit-III: Matrix Eigenvalue problem: Eigenvalue location, error, and stability results, 18						18
Power method. Orthogonal transformations using Householder matrices. The eigenvalues							
of a symmetric Tridiagonal matrix. QR method. The calculation of Eigenvectors and							
Unit-IV: Numerical solutions of Non-linear equations: Solution of non-linear equations 18							
by iterative methods, acceleration of convergence. Newton's methods for polynomials,							

quotient-difference algorithms. Numerical solution of system of Non-linear equations.		
Unit-V:	18	
Interpolation: Interpolating polynomial and its construction using Lagrange methods and		
methods of differences, iterated interpolation, method of divided differences, inverse		
interpolation, Hermite Interpolation. The general Hermite interpolation problem. Spline		
function and their use.	l .	
References:		
1. K. Atkinson: An Introduction to Numerical Analysis, 2nd edition, Wiley, 1989.		
2. R.L. Burden and J.D. Faires: Numerical analysis, 7th edition, Brooks Cole, 2001.		
3. P.J. Davis: Interpolation and Approximation, Dover, 1975.		
4. J.M. Ortega: Numerical Analysis: A Second Course, SIAM, 1987.		
5. S.S. Sastry: Introductory Methods of Numerical Analysis, Phi Learning, 2009.		

Lab Component: Exposure to MATLAB/Mathematica and computational experiments based on the algorithms discussed in the course.

10. Teaching-Learning Process

- Lectures
- Discussions
- Simulations
- Role Plays
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-enabled Learning

11. Implementation of Blended Learning

Blended Learning is a pedagogical approach that combines face-to-face classroom methods with computer-based activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasizes student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimizes and compliments face-to-face learning, giving ample freedom and flexibility to the students and

teachers to access and explore wide range of open-access resources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face-to-face learning. The blended learning does not undermine the role of a teacher; rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each Program, be adopted

12. Assessment and Evaluation

- Continuous Comprehensive Evaluation at regular intervals after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the program instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations

- Review of Literature
- Collaborative Assignments

13. Keywords

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Program Outcomes
- Program Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation
- Multiple Entry
- Multiple Exit

14. References

- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website, <u>https://www.ugc.ac.in/pdfnews/6100340_Concept-Note-Blended-Mode-of-</u> <u>Teaching-and-Learning.pdf</u>
- Guidelines for Multiple Entry and Exit in Academic Programs offered in Higher Education Institutions, <u>https://www.education.gov.in/sites/upload_files/mhrd/files/upload_document/abc_doc.p</u> df
- National Education Policy-2020, https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- Quality Mandate for Higher Education in India, <u>https://www.ugc.ac.in/e-book/Quality%20Mandate%20E-BOOK/mobile/index.html</u>
- The draft subject specific LOCF templates available on UGC website, <u>https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ</u>==

15. Appendix

Courses of 5-year integrated BSc-MSc Mathematics having similarity more than 50% with corresponding MOOC courses have been identified, perused and discussed. These are recommended to be included for offering as equivalent courses:

Sr.	CUH Program/Semester	CUH Course Title/Type(credits)	MOOC Course	Similarity
1	BSc-MSc (Integ.)/ 1 ST	Calculus /Core (6)	Calculus of One Real Variable	75-80%
2	BSc-MSc (Integ.)/ 2 ND	Multivariate Calculus /Core (6)	Calculus of Several Real Variables	75-80%
3	BSc-MSc (Integ.)/ 2 ND	Ordinary Differential Equations/Core (6)	Differential Equations	70%
4	BSc-MSc (Integ.)/ 3 RD	Group Theory /Core (6)	Introduction to Abstract Group Theory	85%
5	BSc-MSc (Integ.)/ 3 RD	Probability Theory and Statistics /Core (6)	Introduction to Probability Theory and Statistics	80%
6	BSc-MSc (Integ.)/ 3 RD	Real Analysis/Core (6)	Real Analysis	90%
7	BSc-MSc (Integ.)/ 4 TH , 5 TH	Advanced Algebra /Core (6) Linear Algebra /Core (6)	Introduction to Abstract and Linear Algebra	60% 50%
8	BSc-MSc (Integ.)/ 4 TH	Partial Differential Equations and Calculus of Variation /Core (6)	Partial Differential Equations	65%
9	BSc-MSc (Integ.)/ 5 TH , MSc 1 ST	Linear Algebra /Core (6, 4)	Linear Algebra	75-80%
10	BSc-M.Sc (Integ.)/ 6 TH	Numerical Methods /Core (6)	Numerical Methods	75-80%
11	BSc-MSc (Integ.)/ 6 TH MSc/1 ST	Complex Analysis/Core (6, 4)	Complex Analysis	80%
12	MSc/ 1 st , 4 th	Algebra-I /Core (4) Algebra-II /Core (4)	Rings and Modules	50% 50%
13	MSc /3 RD	Operations Research /DSEC (4)	Operations Research	90%
14	MSc /4 TH	Measure Theory and Integration /DSEC (4)	Measure Theory	90%

List of Courses in Integrated BSc-MSc, and MSc Mathematics programs:

MOOC courses (SWAYAM) having similarity more than 75% with the core courses may be offered to the students. For SEC/GEC/AECC/DCEC/DSEC courses, the students may opt from the MOOC courses provided these courses are not in the list of core courses and student have not studied similar courses earlier. Since, the list of MOOC courses (SWAYAM) keeps changing, the departmental committee is authorized to finalize the list of MOOC courses for each semester based on the above criteria.

		Distribution of Marks
		(Max. Marks=100)
Continuous		Max. Marks=30
Assessment	Sessional-I	10
	Sessional-II	10
	Quiz/Assignment	5
	Attendance	5
End Term		Max. Marks=70
Examination		(i) Question 1 has seven sub-parts (short
(3 Hours)		answer-type) at least one from each unit and students need to answer any five. Each sub-part carries 2 Marks. $(5x2=10)$
		 (ii) Question 2 to 6 (one from each unit) have three sub-parts each, and students need to answer any two. Each sub-part carries 6 marks. (2x6x5=60 marks).

Structure of Question Papers and Marks Distribution